几个基本概念模型(Model) vs模式(Pattern)数据挖掘的根本目的是将样本数据中隐藏的结构推广到整体(Population)模型:对数据集全局特征的描述或概括,适用于数据空间的所有点,例如聚类分析模式:对数据集局部有限特征的描述或概括,适用于数据空间的子集,例如关联分析算法(Algorithm):一个定义完整的过程,以数据为输入,生成模型或模式描述型挖掘(Descriptive) vs预测型挖掘(Predictive)描述型挖掘:概括数据,呈现数据的重要特征预测型挖掘:基于观察到的对象特征预测其其他特征描述型挖掘可作为目的,也可作为手段
数据挖掘的基础概念-腾讯大讲堂59-发现商业机会
相关推荐
洞悉用户行为,挖掘商业机遇:腾讯大讲堂59期
数据驱动决策:构建用户行为分析模型
精准的用户行为分析是挖掘商业机遇的关键。腾讯大讲堂59期以数据为基础,构建用户行为观察模型,助力企业洞察用户需求,制定有效的商业策略。
模型构建步骤:
定义观察窗口和表现窗口:
观察窗口:用于收集用户行为数据的时间段,例如2007年1月至3月。
表现窗口:用于观察用户行为结果的时间段,例如2007年5月至6月。
设置时间滞后(Time Lag):
Time Lag:为业务部门预留的操作时间,例如2007年4月。
交叉验证:
使用不同时间段的数据进行交叉验证,例如观察窗口为2007年2月至4月,表现窗口为2007年6月至7月,Time Lag为2007年5月。
模型应用:
通过观察窗口收集用户行为数据,经过Time Lag后,在表现窗口观察用户行为结果,并将结果与预期进行比较,评估策略有效性。
示例:
| 时间段 | M | M-1 | M-2 | M-3 | M-4 | M-5 | M+1 | M+2 | M+3 ||---|---|---|---|---|---|---|---|---|---|| 描述 | | 观察窗口 | | | | | 表现窗口 | | |
结论:
通过构建用户行为观察模型,企业可以有效地分析用户行为,识别潜在商机,并制定精准的商业策略。
数据挖掘
3
2024-05-12
数据洪流中的商机:腾讯大讲堂59期
在这个数据爆炸的时代,数据挖掘技术的重要性日益凸显。早在1963年,IBM 7090处理600个案例时,就面临着“机器存储限制,一次只能考虑25个变量”的困境。如今,海量数据蕴藏着巨大的商机,等待我们去挖掘和利用。
数据挖掘
7
2024-05-19
数据蕴含商机:腾讯大讲堂59期带你玩转EDA
玩转数据,洞悉商机:探索性数据分析(EDA)
EDA,即探索性数据分析, 是一种灵活的数据分析方法,它无需预设严格的假设,而是通过可视化、分析残差、数据转换等方式,来揭示数据背后的结构和关系, 发现潜在的规律和商机。
EDA常用方法:
统计量: 均值、方差、根方差、协方差、峰度、偏度、相关系数等
统计图: 饼图、直方图、散点图、箱尾图等
模型: 聚类
EDA的优势:
直观易懂: 通过图表等可视化手段,将数据信息清晰地展现出来。
发现潜在规律: 帮助我们识别数据中的异常值、趋势和模式, 挖掘隐藏的商机。
验证假设: 为后续的建模和分析提供基础和方向。
腾讯大讲堂59期, 带你一起玩转EDA,探索数据背后的无限可能!
数据挖掘
3
2024-05-14
数据掘金:腾讯大讲堂探秘商机
数据,蕴藏着无限商机,犹如金矿等待挖掘。腾讯研究院数据分析研究室专家Simon Jiang (江宇闻) 将于2009年2月24日腾讯大讲堂,与您共同探讨如何从数据中发现商业价值,洞察先机,决胜千里。
数据挖掘
2
2024-05-20
数据驱动的客户细分:腾讯大讲堂揭秘商机
“物以类聚,人以群分”,这句古语在商业领域同样适用。如何精准地将客户分类,找到最有价值的客户群体,是每个企业都在思考的问题。腾讯大讲堂第59期以“数据蕴含商机”为主题,探讨了如何利用数据进行客户细分,以及如何避免维度灾难。
传统的客户细分方法往往依赖人为经验,选取诸如地域、活跃程度等有限的维度。然而,随着数据量的爆炸式增长,维度也随之急剧增加,导致细分数目指数级增长,这就是所谓的“维度灾难”。人脑难以处理如此高维的数据,更无法从中有效地提取信息。
腾讯大讲堂指出,数据驱动的方法可以帮助我们克服维度灾难,实现更精准、高效的客户细分。通过机器学习等技术,我们可以从海量数据中自动识别关键特征,并进行有效的降维,从而找到隐藏的客户群体,挖掘潜在的商机。
数据挖掘
5
2024-05-19
数据驱动业务增长:腾讯大讲堂解读闭环流程
如何利用数据洞察,构建闭环业务流程,驱动业务增长?腾讯大讲堂为您揭秘!
闭环流程构建步骤:
现有流程评估: 深入分析现有业务流程,识别关键环节和瓶颈。
数据采集/ETL: 建立完善的数据采集体系,高效整合多源数据。
数据分析/数据挖掘: 应用数据分析和挖掘技术,深入洞察客户行为和市场趋势。
流失客户分析: 精准识别流失客户群体,分析流失原因。
计划和设计挽留行动: 基于数据分析结果,制定精准的客户挽留策略。
执行挽留行动: 将挽留策略付诸实践,采取针对性措施。
挽留行动评估: 评估挽留行动效果,衡量投资回报率。
挽留结果调整: 根据评估结果,不断优化挽留策略,提升效率。
应用流程: 将成功经验推广应用到其他业务环节,形成数据驱动的闭环体系。
数据挖掘
3
2024-05-19
SQL Server数据库应用与开发网络大讲堂的第二部分
SQL Server数据库应用与开发网络大讲堂的第二部分内容包括...
SQLServer
0
2024-08-19
数据挖掘:发现未知的有效信息
数据挖掘区别于传统的查询、报表、联机分析等数据分析方式,其核心在于无需预设假设,直接从数据中挖掘信息、发现知识。
数据挖掘的目标是发现那些先前未知、切实有效且具有实用价值的信息。
先前未知意味着这些信息是预先无法预料的,甚至可能与直觉相悖。
有效性保证了信息的可靠性和准确性,能够为决策提供支持。
实用性则强调信息能够应用于实际场景,解决实际问题。
例如,一家连锁店通过数据挖掘发现看似毫无关联的商品——婴儿尿布和啤酒——之间存在着惊人的联系,这便是数据挖掘发现未知信息的典型案例。
数据挖掘
3
2024-05-24
数据挖掘的商业应用
数据挖掘在商业领域得到广泛应用,协助企业从大量数据中提取有价值的信息,包括:
客户细分:识别不同的客户群体,定制营销策略。
预测分析:利用数据模型预测客户行为和趋势,进行风险评估。
异常检测:发现数据中的异常值,识别欺诈或故障。
模式识别:从数据中识别模式和规律,优化业务流程。
市场调研:分析市场趋势,了解客户偏好和竞争格局。
通过这些应用,数据挖掘赋能企业做出明智决策、提升运营效率、增强竞争优势。
数据挖掘
5
2024-04-30