- 综述了图数据挖掘的研究现状。
- 介绍了AGM、FSG和gSpan算法及其主要思想。
- 分析了算法复杂性并预测了未来发展方向。
图像数据挖掘方法概述
相关推荐
数据挖掘概述与方法探讨
数据挖掘概述是通过对特定数据对象进行汇总、分析和比较,以获取其内涵描述及关键特征的过程。数据特征化的结果可以采用饼图、柱状图、曲线等形式呈现,而数据区分则包括比较度量,帮助区分目标类和比较类。
数据挖掘
3
2024-07-18
数字图像挖掘研究概述
随着数字成像技术和网络技术的迅猛发展,各个应用领域如医学、遥感、交通监控等产生了大量的数字图像数据。如何从这些海量图像中有效提取信息和知识,成为一个具有挑战性的研究课题。早期的技术虽然能在一定程度上帮助用户筛选图像内容,但要深入挖掘图像中的潜在信息,则需要更为先进的技术手段。因此,图像挖掘作为一个新兴研究领域,应运而生。图像挖掘不仅仅是数据挖掘的一个分支,它面临着诸如高维性、结构复杂性、语义鸿沟和多样性等挑战。图像挖掘的总体过程包括数据预处理、特征提取、知识发现和结果评估等步骤。在模型选择上,监督学习、无监督学习、半监督学习和深度学习模型都在图像挖掘中发挥着重要作用。
数据挖掘
0
2024-08-10
数据挖掘方法和技术分类概述
随着数据挖掘技术的发展,我们可以将其方法和技术进行分类。这些包括概念描述、关联分析、分类、预测、聚类分析和孤立点分析等。每种方法和技术都在不同领域展示了其独特的应用价值。
数据挖掘
2
2024-07-17
数据挖掘概述
数据挖掘提取有意义的信息、模式和趋势,应用广泛。该技术涉及各种技术,包括机器学习、统计建模和数据可视化。数据挖掘用于各个领域,例如欺诈检测、客户细分和医疗诊断。
数据挖掘
8
2024-05-01
数据挖掘技术概述
《数据挖掘概念与技术》的中文版是一本经典教材,首次出版于2000年。它详尽地介绍了数据挖掘的基本概念和技术应用。
数据挖掘
2
2024-07-15
数据挖掘技术概述
这本书详细介绍了数据挖掘的各种技术,是数据科学领域中最经典的英文书籍之一。
数据挖掘
3
2024-07-18
数据挖掘算法概述
数据仓库:数据存储和管理 特征提取:从数据中提取有意义特征 模糊集、粗糙集:处理不确定和模糊数据 Fourier变换、小波变换:数据变换和分析 决策树:分类和回归模型 关联规则:发现数据中的关联关系 kNN:分类和回归算法 聚类分析:数据分组 朴素贝叶斯:分类模型 EM算法:处理缺失值和估计参数 神经网络:复杂非线性模型 遗传算法:解决优化问题 支持向量机:分类和回归模型 隐马尔可夫模型:处理顺序数据 提升模型、共同训练、主动学习、直推学习、广义EM算法、强化学习:算法改进和优化 学习机性能评估:模型评估和改进
数据挖掘
4
2024-04-29
数据挖掘技术概述
介绍数据挖掘技术的基本原理及其在处理PPty文件方面的应用。数据挖掘技术通过分析大数据集,发现隐藏在其中的模式和关联,为信息处理和决策提供支持。PPty文件是一种常见的数据格式,数据挖掘技术能够有效地从中提取有用信息,帮助用户理解和利用数据。
数据挖掘
0
2024-08-25
从数据挖掘到网络挖掘 - 概述
数据挖掘(Data mining)是一种简要的概述。文本挖掘(多媒体数据挖掘)、网页挖掘的趋势和研究问题。
数据挖掘
3
2024-07-16