谢麟炯介绍了唯品会海量数据实时 OLAP 分析实践。
谢麟炯唯品会海量数据实时 OLAP 分析实践
相关推荐
唯品会的大数据分析优化
唯品会正在积极推动数据平台和实时计算平台的建设,以优化其大数据分析能力。这些举措不仅提升了系统架构的稳定性,还在实际应用中取得了显著成效。
Hadoop
1
2024-07-16
Flink CDC 助力海量数据实时同步与转换
Flink CDC 助力海量数据实时同步与转换
Flink CDC 是一种基于 Flink 的变更数据捕获技术,能够实时捕获数据库中的数据变更,并将其转换成可供 Flink 处理的流数据。
Flink CDC 的优势:
低延迟: Flink CDC 能够以极低的延迟捕获数据变更,确保数据的实时性。
高吞吐: Flink CDC 能够处理海量数据变更,满足高吞吐的需求。
易用性: Flink CDC 提供了简单易用的 API,方便用户进行开发和维护。
应用场景:
实时数据仓库: 将数据库中的数据变更实时同步到数据仓库,实现数据仓库的实时更新。
实时数据分析: 基于 Flink CDC 捕获的数据变更进行实时数据分析,获得业务洞察。
数据管道: 将数据变更实时同步到其他系统,构建实时数据管道。
总结:
Flink CDC 为海量数据的实时同步和转换提供了一种高效、可靠的解决方案,能够满足各种实时数据处理的需求。
flink
4
2024-05-12
大数据实践—Storm流计算实时异常监控
采用Storm流计算构建日志收集系统,实时汇聚日志数据,并结合离线数据分析,通过预先设定的规则对数据进行异常监测,实现实时告警和及时响应。
算法与数据结构
9
2024-04-30
PHP在大数据实时分析中的应用
由于提供的文件内容为乱码,无法直接解读具体的知识点。但是,基于标题和描述提供的信息,我们可以讨论PHP用于大数据实时分析的相关知识点。PHP作为一种广泛使用的服务器端脚本语言,在传统的网站开发和小型到中型的数据处理中有着丰富的经验。随着计算机硬件性能的提升和PHP语言的优化,PHP在处理大数据量和实时分析方面也有了不少进展。实时分析要求在数据产生的同时即刻对其进行处理和分析,这对金融交易、在线营销等应用场景尤为重要。为了实现大数据量的实时分析,PHP通常与其他技术如命令行工具、数据流处理服务(如Apache Kafka或RabbitMQ)以及Socket编程等协同工作。面对性能问题和数据库优化挑战,优化代码、使用加速器或与高性能语言结合是扩展PHP功能的主要策略。为提高效率,PHP还可以与Redis、MongoDB等结合,利用内存数据结构和PaaS解决方案提升应用性能。
算法与数据结构
0
2024-10-15
Druid 实时 OLAP 数据仓库架构解析
海量数据处理: 可扩展至 PB 级数据,满足大规模数据需求。
亚秒级响应: 即时导入,查询响应速度达亚秒级,实现实时数据分析。
高可用性: 分布式容错架构,确保无宕机运行,保障数据可靠性。
存储高效: 采用列存储和压缩技术,大幅减少数据存储空间,节省存储成本。
高并发支持: 支持面向用户应用,可满足高并发访问需求。
Hadoop
3
2024-04-30
Druid大数据实时分析存储框架的详尽解读
Druid大数据实时分析存储框架,涵盖了精彩的PPT分享内容,支持交互式查询。可以执行即席查询以毫秒为单位,用于分组、筛选和数据聚合。Druid非常适合驱动多租户用户界面应用程序。
算法与数据结构
3
2024-07-20
Pig 大数据实践指南
探索 Pig 的实战应用,掌握大数据处理的强大工具。
Hadoop
4
2024-04-30
Redis大数据实践指南
Redis大数据之路PDF文档,由唐福林编著。本指南提供Redis快速入門教程。
Redis
2
2024-04-30
大数据实践项目- Nginx日志分析可视化
在这个名为“大数据实践项目- Nginx日志分析可视化”的项目中,我们的主要关注点是如何利用现代技术处理和展示网络服务器日志。Nginx是一款广泛使用的高性能Web和反向代理服务器,其生成的日志文件包含丰富的用户访问信息,是进行数据分析和业务洞察的关键来源。项目采用了流式和批处理两种不同的方法来分析这些日志,然后借助Flask框架和ECharts数据可视化库展示结果。以下是对这个项目涉及的主要知识点的详细说明:1. Nginx日志:Nginx的默认日志格式包括请求时间、客户端IP、请求方法、请求URL、HTTP状态码、请求大小等。通过对这些日志的解析,我们可以获取用户的访问行为、热门页面、错误状态码分布等信息。2. 大数据处理:在处理大量日志时,传统的数据库可能无法胜任。项目中提到的“流”和“批”处理分别对应实时和批量处理大数据的方法。流处理(如Apache Flink或Kafka Streams)允许在数据产生时即进行处理,适用于需要快速响应的场景;批处理(如Apache Spark或Hadoop MapReduce)则对一定时间段内的数据进行集中处理,适合离线分析。3. Python:Python是大数据分析和Web开发的常用语言。在这个项目中,Python可能用于读取、清洗、解析Nginx日志,以及构建分析模型。4. Flask:Flask是一个轻量级的Python Web框架,用于构建后端服务。在这个项目中,Flask负责接收分析结果,并提供API接口供前端调用,或者直接渲染HTML页面展示可视化结果。5. ECharts:ECharts是一个基于JavaScript的开源数据可视化库,提供了丰富的图表类型,如折线图、柱状图、饼图等,用于直观地展示数据分析结果。在这个项目中,ECharts与Flask结合,将分析数据转化为可视化图表。6. 数据清洗和预处理:在实际分析之前,日志数据通常需要进行清洗,去除无关信息,处理异常值,统一数据格式等。Python的pandas库在此过程中扮演重要角色。7. 数据分析:根据项目需求,可能涉及到的数据分析任务包括但不限于:用户访问频率统计、热门页面识别、访问趋势分析、错误状态码分析等。这些分析可以通过Python的数据分析库如pandas和numpy完成。
数据挖掘
2
2024-07-27