学习数据间有效距离度量已在多个任务(如人脸验证、零镜头学习和图像检索)中显示出优异性能。我们专注于使用丰富关系挖掘的框架,即深度非对称度量学习(DAMLRRM),以在数据子集中发现重要信息。与传统硬数据挖掘不同,DAMLRRM结合两个结构不同且长度不等的数据流,通过最小生成树连接相关区域,有效提升泛化能力。在CUB-200-2011、Cars196和Stanford Online Products三个数据集上的实验显示,DAMLRRM显著改善了现有深度度量学习方法的性能。