变换图像压缩方法广泛应用,小波处理图像边缘和纹理时能量高。采用多尺度几何分析稀疏展开图像,变换非线性逼近能力强。图像经非下采样Contourlet变换成多尺度、多方向、多分辨率表示,进行统计分析。利用图像系数相关性,降低维数,凸显弱边缘细节,达到压缩去噪效果。实验证实该方法对高分辨率图像去噪效果显著。
基于光学多尺度几何分析的图像压缩去噪技术研究 (2014)
相关推荐
基于Matlab GUI的多滤波器图像去噪实现
介绍了一种基于Matlab GUI的图像去噪方法,通过多种滤波器实现对图像的去噪处理。项目包含完整的Matlab源码,代码结构清晰,注释完整,方便用户理解和学习。用户只需将代码导入Matlab环境,即可运行程序并观察去噪效果。
主要功能:
提供多种滤波器选择,例如均值滤波、中值滤波、高斯滤波等,满足用户不同的去噪需求。
可视化界面操作,用户可通过GUI界面选择不同的滤波器类型和参数设置,操作简便直观。
实时显示去噪结果,方便用户对比不同滤波器对图像去噪效果的影响。
本项目适用于图像处理、信号处理等相关领域的学习和研究,可为图像去噪算法的研究提供参考。
Matlab
12
2024-05-30
基于互信息的图像配准技术研究
深入探讨了基于互信息的图像配准方法。研究包括对互信息理论的详细解析和在Matlab中进行的图像配准仿真实验。实验结果分析表明,该算法在性能上表现出色。此外,针对传统插值方法效率低下和灰度影响问题,引入了PV插值技术,有效抑制了互信息的大幅变换,优化了配准参数。针对搜索方向线性无关问题,还研究了改进的Powell算法,确保搜索方向的线性独立性。最后,为提高配准精度,提出了基于小波变换和互信息的图像分层配准方法。
Matlab
7
2024-09-25
基于MATLAB GUI的图像去噪平台设计
首先简要介绍了高斯噪声、椒盐噪声等常见噪声模型及其特点,接着对MATLAB GUI平台进行了相关介绍。最后详细阐述了线性滤波、中值滤波、维纳滤波和小波去噪四种滤波方法的原理,并展示了如何通过MATLAB GUI将它们整合到一个图像处理平台上。
Matlab
6
2024-09-27
EMD去噪技术的应用
emd(经验模态分解去噪)是一款国外编写的软件,适用于研究EMD去噪技术的专业人士,尤其是在matlab程序中表现出色。
Matlab
10
2024-07-26
图像去噪中的中值滤波性能分析
在图像处理中,中值滤波展现出了有效的去噪能力,特别是对于原图像中的高斯噪声和椒盐噪声。采用5×5的十字形中值滤波可以有效减少噪声干扰。
Matlab
11
2024-07-29
低照度图像增强技术研究
在现实生活中,由系统采集设备所获取的图像和视频,在周围环境光照不足的情况下容易出现对比度下降、细节丢失、色彩失真等问题。这些问题严重影响了图像后续处理与应用的效果。因此,有效地对低照度图像进行增强显得尤为重要。分析了低照度环境下图像质量降低的原因及其特性,探讨了当前常用的图像增强算法,并基于实际情况对这些算法进行了改进和优化。
Matlab
8
2024-09-16
基于颜色特征的铁谱图像磨粒识别技术研究
铁谱图像中的颜色信息对于磨粒识别和磨损形式分析至关重要。本研究深入探讨了铁谱图像的颜色特征,并提出了一种结合聚类树分析、模糊聚类技术和统计分析的定量研究方法。该方法能够有效分割铁谱图像的背景和磨粒区域,从而获取可用于定量分析的磨粒。通过计算颜色特征,为铁谱图像的进一步处理和识别,以及磨粒的机器自动识别和磨损形式分析奠定了基础。
统计分析
9
2024-04-30
MATLAB图像去噪代码综述
这是一个月学习总结的图像预处理结果,包含10种常见的图像去噪方法:巴特沃斯高通滤波、高斯滤波、各向异性扩散、均值滤波、双边滤波、同态滤波、维纳滤波、小波去噪、中值滤波、自适应中值滤波等。这些方法可以有效地改善图像质量,适用于不同的图像处理需求。
Matlab
8
2024-08-18
图像序列运动目标检测技术研究基于高斯混合模型
全面探讨了基于高斯混合模型的图像序列运动目标检测技术,包括目标检测与追踪技术的详细介绍,还涵盖了部分matlab源代码及仿真图形。技术的进步为图像处理领域带来了新的视角和方法。
Matlab
9
2024-07-31