《Hadoop实战》是一本详细介绍Apache软件基金会开源项目Hadoop技术的书籍,由韩冀中翻译。本书深入浅出地探讨了Hadoop的核心概念、架构及其在大数据处理领域的实际应用。作者首先介绍了Hadoop的起源及其核心理念“廉价存储和大规模并行计算”,灵感来源于Google的MapReduce论文和GFS系统。书中详细讲解了Hadoop的两大核心组件:HDFS和MapReduce,以及Hadoop生态系统中的其他重要工具如HBase、Hive、Pig、Zookeeper等。此外,作者还通过实例展示了如何安装、配置和管理Hadoop集群,以及编写MapReduce程序进行数据处理。书中还探讨了Hadoop在日志分析、推荐系统和机器学习等领域的应用案例,以及高级主题如YARN调度器和与Spark集成。
Hadoop实战 Apache大数据处理技术详解
相关推荐
大数据处理实战
掌握Hadoop和Spark技巧,轻松处理大数据!
Hadoop
8
2024-05-13
大数据处理解决方案Hadoop技术详解
大数据处理方案——Hadoop技术基础概念及其1.x与2.x系统框架介绍,深入探讨Hadoop生态系统。
Hadoop
0
2024-10-22
Apache Spark 2.3.0大数据处理框架详解
Apache Spark是Apache软件基金会下的一款专为大规模数据处理设计的高效、通用、可扩展的大数据处理框架。在Spark 2.3.0版本中,新增了多项性能优化和功能增强,包括Spark Core、Spark SQL、Spark Streaming、MLlib(机器学习库)和GraphX(图计算)。解压后,用户需按照指南进行环境配置,如修改目录名称为spark-2.3.0,并编辑spark-env.sh文件设置相关环境变量,如SPARK_MASTER_IP、SPARK_LOCAL_IP、SPARK_EXECUTOR_INSTANCES和SPARK_EXECUTOR_MEMORY等。此外,还需配置Scala 1.11.x和Hadoop 2.6的路径以确保兼容性,详细配置步骤可参考官方指南。
spark
2
2024-07-13
Hadoop Spark大数据处理技巧
大数据处理技巧,结合Hadoop和Spark技术,助力数据算法处理
spark
3
2024-05-13
Hadoop大数据处理架构概述
第二章:Hadoop大数据处理架构
Hadoop
2
2024-05-13
Spark大数据处理技术
本书由夏俊鸾、黄洁、程浩等专家学者共同编写,深入浅出地讲解了Spark大数据处理技术。作为一本经典的入门教材,本书内容全面,涵盖了Spark生态系统的核心概念、架构原理以及实际应用案例,为读者学习和掌握大数据处理技术提供了系统化的指导。
spark
3
2024-05-29
Spark大数据处理技术
一本介绍Spark大数据处理技术的电子书。
spark
4
2024-04-29
Apache Spark 3.1.2兼容Hadoop 3.2的高效大数据处理框架
Apache Spark 3.1.2是Apache Spark的一个重要版本,为大数据处理提供了高效、可扩展的框架。该版本针对Scala 2.12编译,与Hadoop 3.2兼容,充分利用Hadoop生态系统的最新功能。在Linux环境下,Spark能够优秀地运行并与其他Hadoop组件集成。Spark核心概念包括DAG调度、Resilient Distributed Datasets (RDD)、容错机制和内存计算。Spark与Hadoop 3.2的兼容性使其能够充分利用多命名空间、Erasure Coding、优化的YARN调度器和提升的HDFS容量。在Linux上部署Spark 3.1.2需要解压spark-3.1.2-bin-hadoop3.2.tgz文件,配置环境变量,并进行可选的参数设置和Hadoop环境初始化。
spark
0
2024-10-09
大数据处理技术Hadoop与Hive完整配置指南
在大数据处理领域,Hadoop和Hive是两个非常关键的组件。Hadoop作为开源框架,专注于大规模数据的分布式存储和计算,而Hive则建立在Hadoop之上,提供类似SQL的HQL语言来管理和查询分布式数据。将详细介绍它们的架构和使用方法,以及配置资源的最佳实践。一、Hadoop基础1. Hadoop架构:包括HDFS(Hadoop Distributed File System)和MapReduce,负责数据存储和计算任务。2. HDFS:将大文件分割成多块,存储在集群的不同节点上。3. MapReduce:实现数据的并行处理,通过Map和Reduce阶段完成任务。4. YARN:负责资源管理和任务调度。二、Hive特性与应用1. Hive设计:将结构化文件映射为数据库表,提供HQL接口简化大数据分析。2. Metastore:存储Hive元数据,如表结构和分区信息。3. HQL与SQL:支持类SQL语法进行数据处理。4. 与Hadoop集成:数据存储在HDFS,计算任务通过MapReduce或Spark执行。三、配置资源建议在Hadoop与Hive配合使用中,正确设置配置文件至关重要:1. hadoop-env.sh:定义Hadoop环境变量确保正常运行。2. core-site.xml:配置Hadoop核心设置,如JAVA_HOME和HADOOP_PID_DIR。
Hadoop
2
2024-07-15