数据挖掘是从大数据中提取有价值信息和知识的技术,涉及数据库、人工智能、机器学习和统计学等多个领域。数据预处理是数据挖掘过程中不可或缺的步骤,包括数据清洗、数据集成、数据转换和数据规约。这些步骤能够有效提升数据质量,优化挖掘模型的准确性和效率。数据清洗解决缺失值、异常值和重复值,数据集成处理不同源数据的一致性,数据转换包括尺度变换和特征选择,数据规约通过降维和概括减少数据集大小。数据预处理根据挖掘任务定制策略,如分类、聚类和关联规则挖掘,最终评估挖掘模式的质量和意义。