【大数据技术之Hadoop入门】 Hadoop是由Apache基金会开发的分布式系统基础架构,主要用于解决大规模数据的存储和分析计算问题。它起源于Doug Cutting创建的Lucene项目,实现类似Google的全文搜索功能。随着数据量的增加,Lucene面临与Google相似的挑战。Cutting及其团队学习并模仿了Google的解决方案,例如GFS(Google文件系统)对应HDFS(Hadoop分布式文件系统),Map-Reduce对应Hadoop的MapReduce计算框架,而BigTable启发了HBase的发展。Hadoop的发展可以追溯到2001年,当时Lucene成为Apache基金会的子项目。2003年至2004年,随着Google公开GFS和MapReduce的部分细节,Cutting等人在两年内基于这些概念开发了DFS和MapReduce,极大地提升了Nutch的性能。2005年,Hadoop正式成为Apache基金会的一部分,其名称源自Cutting的儿子的玩具大象。Hadoop有三个主要版本:Apache、Cloudera和Hortonworks。Apache版本是最原始的版本,适合初学者学习。Cloudera广泛应用于大型互联网企业,提供支持、咨询和培训等商业解决方案,其产品CDH在兼容性、安全性和稳定性方面有所增强,Cloudera Manager则是集群部署和管理的平台。Hortonworks由雅虎工程师创立,对Hadoop的贡献非常大,其主打产品HDP是100%开源的,包含了Ambari等管理工具以及对Hive性能优化的HCatalog。Hadoop生态系统包括多个组件,如HDFS用于分布式存储,MapReduce负责大数据处理,YARN作为资源管理系统,HBase是NoSQL数据库,Zookeeper提供分布式协调服务,Hive提供类似SQL的接口进行数据分析,Pig简化了大数据处理的编程模型,Oozie是工作流调度系统,Sqoop用于Hadoop和传统数据库之间的数据导入导出,Flume用于日志收集和传输。Hadoop的核心特性包括高容错性、可扩展性和成本效益。通过数据的分布式存储和计算,Hadoop能够处理PB级别的数据。