数据挖掘从海量数据中提取有价值信息,满足特定需求。2000年,数据挖掘市场规模约7.5亿美元,预计未来五年年增长率达32.4%,亚太地区为26.6%。专家预测,数据挖掘将在未来5-10年在中国形成新产业。
数据挖掘解析
相关推荐
数据挖掘算法解析
数据挖掘常用算法原理
本资源解析数据挖掘领域常见算法,例如决策树、聚类等,阐述其原理和应用。
决策树: 通过树状结构进行决策,每个节点代表一个属性测试,每个分支代表测试结果,最终叶子节点代表决策结果。
聚类: 将数据集中的对象根据相似性进行分组,同一组内的对象彼此相似,不同组之间的对象差异较大。
数据挖掘
3
2024-05-21
Python数据挖掘案例解析
本书深入剖析基于 Python 的数据挖掘案例,提供从理论到实践的全面指导。书中涵盖经典案例分析与代码实现,帮助读者掌握数据挖掘核心技术,无论Python基础如何,都能从中获益。
数据挖掘
3
2024-06-04
SPSS Modeler数据挖掘过程解析
本PDF文件详细解析了使用SPSS Modeler进行数据挖掘的步骤,指导用户从数据导入到模型创建和评估的完整流程。
数据挖掘
3
2024-05-20
数据挖掘概念与技术解析
数据挖掘:概念与技术(这里指的是之前上传的数据挖掘的课后答案,但仅涵盖前两章内容),希望能够为读者提供帮助。
数据挖掘
2
2024-07-15
序列模式-数据挖掘算法解析
序列模式t是指在多个数据序列中发现共同的行为模式。 t通过时间序列搜索出重复发生概率较高的模式,强调时间序列的影响。 例如,在所有购买了激光打印机的人中,半年后80%的人再购买新硒鼓,20%的人用旧硒鼓装碳粉; 在所有购买了彩色电视机的人中,有60%的人再购买VCD产品; 在时序模式中,需要找出在某个最短时间内出现比率一直高于某一最小百分比(阈值)的规则。
数据挖掘
2
2024-07-15
数据挖掘:概念与技术解析
数据挖掘的概念与技术深入解析,助你掌握数据挖掘精髓。
数据挖掘
3
2024-04-30
序列模式-数据挖掘算法解析
序列模式t是指在多个数据序列中发现共同的行为模式。t通过时间序列搜索出重复发生概率较高的模式。这里特别强调时间序列的影响。例如,在所有购买了激光打印机的人中,半年后80%的人再购买新硒鼓,20%的人用旧硒鼓装碳粉;在所有购买了彩色电视机的人中,有60%的人再购买VCD产品;在时序模式中,需要找出在某个最短时间内出现比率一直高于某一最小百分比(阈值)的规则。
数据挖掘
0
2024-10-17
Web数据挖掘的深入解析
Web数据挖掘简介
Web数据挖掘是指从Web数据中提取有价值的信息,通过分析Web页面、用户行为等数据,揭示潜在的模式和规律。它在当今的信息化社会中具有广泛的应用,如精准营销、个性化推荐和社交媒体分析等。
Web数据挖掘的核心流程
数据收集:获取所需的Web数据资源,包括结构化数据和非结构化数据。
数据预处理:对原始数据进行清洗、格式化和转换,以适应挖掘需求。
数据分析:使用统计分析和机器学习方法挖掘潜在模式。
结果应用:将挖掘结果应用于特定业务场景,实现数据驱动的决策支持。
Web数据挖掘的主要应用场景
搜索引擎优化:通过分析用户搜索行为优化关键词。
个性化推荐:根据用户行为数据推荐内容。
舆情监测:识别和预测社会热点,辅助决策。
未来展望
随着大数据和人工智能的发展,Web数据挖掘的潜力还将进一步释放,助力各行各业的数据化转型。
数据挖掘
0
2024-10-28
数据仓库Web数据挖掘案例解析
数据仓库为Web数据挖掘的初学者提供了宝贵的实战案例,有助于理解和应用相关技术。
数据挖掘
2
2024-05-21