结合粗糙集和遗传神经网络,提出一种融合建模方法用于滑坡灾害预测。通过建立决策表并进行约简,利用粗糙集提取影响因素,再以这些因素支持度配置BP神经网络初始权值。该模型有效去除冗余信息,提升了运算速度和预测精度,在工程实践中具有应用价值。
RS-BT神经网络融合建模在滑坡灾害预测中的应用
相关推荐
基因算法在神经网络中的应用
为大学生建模提供必要的代码
算法与数据结构
2
2024-07-18
神经网络在MATLAB中的应用实例
MATLAB神经网络的原理和实例详解及其配套源码。
Matlab
0
2024-08-10
BP神经网络在Venice Lagoon数据预测中的应用问题
菜鸟初次接触BP网络预测问题-Venice Lagoon数据1993.txt,请帮助检查程序,预测结果不理想,请求各位大侠指点,非常感谢!要求利用前23个数据预测第24个数据,共有200组数据。输入数据为23200,输出数据为1200。尽管测试数据相同,但预测结果却出现显著错误,请帮忙查明问题所在。详细的样本数据附在文中。
Matlab
2
2024-07-28
RBF神经网络在Mackey-Glass时间序列预测中的应用
c语言实现了RBF神经网络对Mackey-Glass时间序列的预测。这种方法利用了RBF神经网络在处理非线性时间序列数据方面的优势。
Matlab
2
2024-08-02
SVM与神经网络在信息粒化时序回归预测中的应用
在当今计算机科学领域,机器学习技术已经成为数据分析和预测的核心。支持向量机(SVM)和神经网络作为两种重要模型,广泛应用于时序数据的预测。探讨了它们在信息粒化时序回归预测中的理论基础和应用。SVM通过核函数处理非线性关系,优化决策边界;神经网络特别是循环神经网络(RNN)和长短时记忆网络(LSTM),通过时间依赖性捕获数据特征。信息粒化技术将复杂数据转化为更易处理的粒度级别,有效提升模型解释性和预测精度。MATLAB提供了强大的支持,包括SVM回归训练和神经网络模型构建,为优化时序数据预测提供了实用解决方案。
算法与数据结构
1
2024-07-28
MG时间序列预测神经网络的应用
利用神经网络进行MG时间序列预测已被广泛探讨,介绍了使用Matlab代码的具体实现。
Matlab
0
2024-08-08
BP神经网络在上证指数预测中的应用
BP神经网络是一种基于梯度下降的监督学习算法,用于模式识别、函数拟合、数据分类和预测。它包括输入层、隐藏层和输出层,通过反向传播错误调整权重,以提高预测准确性。本案例中,BP神经网络被应用于预测上证指数,这是中国股市的重要指标,反映了上海证券交易所上市股票的整体价格走势。预测上证指数对投资者具有重要参考价值,可辅助投资决策。利用历史数据进行训练和预处理,神经网络通过学习内在数据关系来预测未来趋势。C#编程语言用于实现BP神经网络的代码,创建可执行文件,为用户提供方便的预测工具。
数据挖掘
2
2024-07-16
BP神经网络在设计分析中的应用
设计分析中,BP神经网络因输入向量包含15个元素,导致网络输入层神经元数量为15个。隐含层选择一层,神经元设为31个,输出向量包含12个元素,输出层神经元设为12个。隐层和输出层的转换函数分别为双曲正切函数(tansig)和对数函数(logsig),以确保BP网络输出在[0,1]之间。
Access
3
2024-07-18
bp神经网络在印刷汉字识别中的应用
本科毕业设计涉及bp神经网络在印刷汉字识别方面的研究。
Matlab
2
2024-07-27