基于Agent技术,构建了Multi Agent数据挖掘模型,解决了组织结构、Agent设计和协作问题,提高数据挖掘效率和智能化水平。
Multi Agent数据挖掘模型及其应用
相关推荐
基于多Agent的分散式数据挖掘模型优化
随着数据量的迅速增长,许多企业和组织已经开始重视利用数据挖掘技术来处理大量数据。数据挖掘是在大数据集中识别有用模式或知识的过程,目前在数据挖掘理论研究和应用方面都取得了显著进展。
数据挖掘
3
2024-07-16
基于智能Agent技术的高效数据挖掘模型研究.pdf
传统的数据挖掘方法存在效率低和缺乏智能化等问题,难以满足当前网络环境下对大规模数据的挖掘需求。探讨了数据挖掘技术与智能Agent技术的结合优势,提出了基于智能Agent的创新数据挖掘模型,并详细阐述了其组织结构。该模型显著降低了问题复杂性,减少了人工参与,极大提升了数据挖掘的智能化和效率。
数据挖掘
3
2024-07-16
数据挖掘系统及其应用
随着预测模型的需求增加和复杂性提升,第三代数据挖掘系统应运而生。这些系统支持模型修改和集成,将预测模型自动应用于操作型系统,提升决策支持。移动计算的普及促使第四代数据挖掘系统的研究,结合数据挖掘和移动计算。
算法与数据结构
6
2024-05-01
数据挖掘技术及其应用
这本由我校教师编著,并由顾冠群院士生前审阅的书籍,深入探讨了数据挖掘技术,及其在各个领域的应用。
数据挖掘
4
2024-05-28
数据挖掘技术及其应用
韩佳炜的经典数据挖掘教材,广泛应用于南京大学研究生课程和西安电子科技大学本科生课程。
数据挖掘
2
2024-07-18
数据挖掘技术及其应用
ETL技术,即DTS SQL Server的数据转换服务(Data Transformation Services,简称DTS),提供了一套基于OLE DB的COM对象,利用VBScript、PerlScript或Microsoft Jscript脚本语言描述,用于创建数据转换程序,实现不同OLE DB数据源之间的数据转换操作。
算法与数据结构
0
2024-09-18
ARMA模型及其应用
ARMA模型是一种用于时间序列分析的统计模型,结合了自回归模型(AR)和移动平均模型(MA)。在数据分析中,ARMA模型广泛应用于经济、金融等领域,帮助分析和预测时间序列数据的趋势和波动。ARMA模型的参数选择和模型评估是关键步骤,通过正确的模型构建,可以更准确地理解数据背后的规律。
Access
2
2024-07-12
刘 数据挖掘技术及其应用
刘 数据挖掘技术及其应用
数据挖掘
3
2024-04-30
数据挖掘技术及其应用分析
扫描D,对每个候选项进行计数,生成C1:项集支持度计数{I1} 6 {I2} 7 {I3} 6 {I4} 2 {I5} 2
数据挖掘
2
2024-07-15