Weka数据挖掘: 数据预处理实战
精简数据集
在数据挖掘中, 类似“ID”的属性通常不具备分析价值, 需要移除。 在Weka中, 我们可以通过选中 “id” 属性, 点击 “Remove” 按钮来实现。 操作完成后,将新的数据集保存为 “bank-data.arff” , 并重新打开。
数值属性离散化
一些数据挖掘算法, 例如关联分析, 只能处理标称型属性。 因此, 我们需要对数值型属性进行离散化处理。
本例中, “age”, “income” 和 “children” 三个变量属于数值型。 其中, “children” 只有四个取值: 0, 1, 2, 3。 我们可以直接修改ARFF文件, 将 @attribute children numeric 修改为 @attribute children {0,1,2,3} 。
在 “Explorer” 中重新打开 “bank-data.arff” , 选中 “children” 属性后, 区域6的 “Type” 会显示为 “Nominal”, 表示该属性已成功转换为标称型。
数据挖掘
4
2024-05-16
数据预处理工具 Weka 教程
数据准备
无用属性去除:- 去除无用信息,如 ID。
离散化:- 处理数值型属性,使其符合算法要求(如关联分析)。
例如:“children”属性,修改为 {0,1,2,3}。
数据挖掘
6
2024-04-30
增量处理模式-数据挖掘工具(Weka 教程)
增量学习NaiveBayesUpdateable数据源 - ArffLoader评估 - ClassAssigner分类器 - NaiveBayesUpdateable评估 - IncrementalClassifierEvaluator可视化 - TextViewer可视化 - StripChart精度 - Accuracy均方根误差 - RMSE
数据挖掘
3
2024-05-20
数据挖掘工具WeKa教程
在数据挖掘领域,WeKa作为一种强大的工具,广泛应用于数据处理和模型评估。其功能包括交叉验证、贝叶斯网络显示、数据源管理以及分类器性能评估。通过WeKa,用户可以有效地处理和分析各种数据集。
数据挖掘
0
2024-10-12
WEKA数据挖掘工具教程
WEKA小结:1. 数据预处理- Explorer – Preprocess- Explorer – Select attributes: 可以在Preprocess页面使用属性选择方法。2. 数据可视化- Explorer – Visualize: 二维散布图。3. 分类预测- Explorer – Classify。4. Experimenter: 比较多个算法的性能。5. KnowledgeFlow: 批量/增量学习模式。6. 关联分析- Explorer – Associate。7. 聚类分析- Explorer – Cluster。
数据挖掘
0
2024-10-31
WEKA教程:数据挖掘入门指南
WEKA教程:数据挖掘入门指南
WEKA 简介
...
数据集
...
数据准备
...
数据预处理
...
分类
...
聚类
...
关联规则
...
选择属性
...
数据可视化
...
知识流界面
...
数据挖掘
2
2024-05-19
WEKA数据挖掘中文教程
WEKA全称怀卡托智能分析环境,源代码可通过http://www.cs.waikato.ac.nz/ml/weka获取。WEKA是新西兰的一种鸟名,其主要开发者也来自新西兰。作为公开的数据挖掘工作平台,WEKA集成了多种机器学习算法,涵盖数据预处理、分类、回归、聚类、关联规则以及交互式可视化。想要实现数据挖掘算法或集成自己的方法到WEKA中,并不是一件困难的事情。
数据挖掘
1
2024-07-24
Python数据挖掘数据预处理完整指南
目录:Python主要数据预处理函数
interpolate:插值填充缺失数据,常用于序列数据的平滑处理。此方法通过插值算法,将缺失的数据点自动生成,确保数据完整性。
unique:用于提取唯一值,通常在探索数据中使用,便于检查数据集的独特性和分布情况。
isnull / notnull:检测缺失值的存在性。isnull返回布尔值表示数据是否缺失,notnull则相反,通常与过滤或填充操作结合使用。
random:生成随机数据或打乱数据顺序,有助于数据集的平衡和模型的泛化能力提升。
PCA:主成分分析(Principal Component Analysis),用于降维处理。PCA通过减少特征数,提高数据的处理效率,同时尽量保持数据的主要信息。
Python主要数据预处理函数:在数据挖掘过程中,海量的原始数据中存在大量不完整(有缺失值)、不一致或异常的数据,这会严重影响数据挖掘建模的执行效率,甚至可能导致结果偏差。因此,进行数据清洗至关重要。在数据清洗完成后,还需要进行数据集成、转换、规约等一系列处理,这一过程称为数据预处理。数据预处理的核心目的是提高数据质量,并使数据更好地适应特定的挖掘技术或工具。统计显示,数据预处理工作量占到了整个数据挖掘过程的60%。
数据挖掘
0
2024-10-25
设置页面-数据挖掘工具Weka教程
配置实验模式、选择结果保存路径、设定实验类型、交叉验证和随机化/未知记录次序的保持方法、迭代控制和实验次数设定、管理数据集及类标、添加和设置分类算法及参数。
数据挖掘
2
2024-07-13