Weka数据挖掘: 数据预处理实战
精简数据集
在数据挖掘中, 类似“ID”的属性通常不具备分析价值, 需要移除。 在Weka中, 我们可以通过选中 “id” 属性, 点击 “Remove” 按钮来实现。 操作完成后,将新的数据集保存为 “bank-data.arff” , 并重新打开。
数值属性离散化
一些数据挖掘算法, 例如关联分析, 只能处理标称型属性。 因此, 我们需要对数值型属性进行离散化处理。
本例中, “age”, “income” 和 “children” 三个变量属于数值型。 其中, “children” 只有四个取值: 0, 1, 2, 3。 我们可以直接修改ARFF文件, 将 @attri
数据挖掘
10
2024-05-16
数据预处理工具 Weka 教程
数据准备
无用属性去除:- 去除无用信息,如 ID。
离散化:- 处理数值型属性,使其符合算法要求(如关联分析)。
例如:“children”属性,修改为 {0,1,2,3}。
数据挖掘
13
2024-04-30
增量处理模式-数据挖掘工具(Weka 教程)
增量学习NaiveBayesUpdateable数据源 - ArffLoader评估 - ClassAssigner分类器 - NaiveBayesUpdateable评估 - IncrementalClassifierEvaluator可视化 - TextViewer可视化 - StripChart精度 - Accuracy均方根误差 - RMSE
数据挖掘
11
2024-05-20
数据挖掘工具WeKa教程
在数据挖掘领域,WeKa作为一种强大的工具,广泛应用于数据处理和模型评估。其功能包括交叉验证、贝叶斯网络显示、数据源管理以及分类器性能评估。通过WeKa,用户可以有效地处理和分析各种数据集。
数据挖掘
7
2024-10-12
WEKA数据挖掘工具教程
WEKA小结:1. 数据预处理- Explorer – Preprocess- Explorer – Select attributes: 可以在Preprocess页面使用属性选择方法。2. 数据可视化- Explorer – Visualize: 二维散布图。3. 分类预测- Explorer – Classify。4. Experimenter: 比较多个算法的性能。5. KnowledgeFlow: 批量/增量学习模式。6. 关联分析- Explorer – Associate。7. 聚类分析- Explorer – Cluster。
数据挖掘
8
2024-10-31
WEKA教程:数据挖掘入门指南
WEKA教程:数据挖掘入门指南
WEKA 简介
...
数据集
...
数据准备
...
数据预处理
...
分类
...
聚类
...
关联规则
...
选择属性
...
数据可视化
...
知识流界面
...
数据挖掘
9
2024-05-19
WEKA数据挖掘中文教程
WEKA全称怀卡托智能分析环境,源代码可通过http://www.cs.waikato.ac.nz/ml/weka获取。WEKA是新西兰的一种鸟名,其主要开发者也来自新西兰。作为公开的数据挖掘工作平台,WEKA集成了多种机器学习算法,涵盖数据预处理、分类、回归、聚类、关联规则以及交互式可视化。想要实现数据挖掘算法或集成自己的方法到WEKA中,并不是一件困难的事情。
数据挖掘
6
2024-07-24
Python数据挖掘数据预处理完整指南
目录:Python主要数据预处理函数
interpolate:插值填充缺失数据,常用于序列数据的平滑处理。此方法通过插值算法,将缺失的数据点自动生成,确保数据完整性。
unique:用于提取唯一值,通常在探索数据中使用,便于检查数据集的独特性和分布情况。
isnull / notnull:检测缺失值的存在性。isnull返回布尔值表示数据是否缺失,notnull则相反,通常与过滤或填充操作结合使用。
random:生成随机数据或打乱数据顺序,有助于数据集的平衡和模型的泛化能力提升。
PCA:主成分分析(Principal Component Analysis),用于降维处理
数据挖掘
8
2024-10-25
设置页面-数据挖掘工具Weka教程
配置实验模式、选择结果保存路径、设定实验类型、交叉验证和随机化/未知记录次序的保持方法、迭代控制和实验次数设定、管理数据集及类标、添加和设置分类算法及参数。
数据挖掘
8
2024-07-13