- 数据挖掘在藏医诊治中的应用
- 综合证候预测模型的构建
- 模型的评价及应用前景
- 数据挖掘技术在藏医中的发展
藏医诊治综合证候预测模型研究
相关推荐
朴素贝叶斯在中医证候分类识别中的数据挖掘应用研究
中医的证候分类及其症状描述错综复杂,准确鉴别病患所属的证候一直是临床医疗的关键挑战。本研究探索了数据挖掘技术中朴素贝叶斯分类方法在中医证候识别中的应用。为了提高分类准确率,结合遗传算法对分类特征进行了优化。研究通过建立数学模型和应用朴素贝叶斯分类方法对中医证候进行了深入分析,并成功应用遗传算法优化特征选择,以提高识别准确性。
数据挖掘
2
2024-07-22
PM2.5空气质量预测模型研究
基于数据挖掘和机器学习,该研究比较了三种模型(LSTM、自回归和SVM)对德里地区PM2.5空气水平的预测能力。实验结果表明,支持向量回归模型在预测准确率方面优于其他模型,通过输入包括氮氧化物、二氧化硫等其他污染物的信息,模型能够更全面地预测PM2.5浓度。该研究重点关注了德里阿南德·维哈尔地区,这是一个严重受污染的地区。
数据挖掘
3
2024-05-25
模型预测结果
应用线性回归模型后,连接训练数据、测试数据和输出端口。运行后,即可获得热燃油的预测结果。
下一步,加载计算器操作符,对热燃油进行求平均值和求和,运行后得到统计汇总的结果。
算法与数据结构
2
2024-05-26
基于数据挖掘的学生学业成绩预测模型研究
数据挖掘技术在解决各领域业务问题中发挥着重要作用,例如教育、电信和零售管理等。凭借其在分类、聚类和关联规则挖掘等方面的功能,数据挖掘技术正变得日益重要。以学生学业成绩数据集为研究对象,构建了预测分类模型,并比较了朴素贝叶斯、决策树、随机森林、JRip 和 ZeroR 等算法的预测性能。研究结果表明,学校和学习时间等因素对学生的最终成绩有显著影响。其中,One Rule、JRip 和决策树等分类算法在预测学生成绩方面表现优异,准确率均超过 80%。
数据挖掘
3
2024-05-31
透明预测:研究论文
本论文探讨了政府使用计算机化流程预测人类行为的能力,关注缺乏透明度的严重关注。论文提出一个全面的概念框架,了解透明性在自动预测建模中的作用。分析了预测建模过程的信息流,提出了实现透明度的策略。论文寻求透明性的根源,分析了限制透明度的反对论点。最后,论文提供了一个创新的政策框架,以实现透明度。
数据挖掘
3
2024-04-29
探究灰色预测模型
灰色预测模型,基于少量、不完整的信息构建数学模型,以此预测未来趋势。
在运用运筹学方法解决实际问题、制定发展战略和政策、进行重大决策时,科学预测不可或缺。
预测,是基于客观事物过去和现在的发展规律,借助科学方法对其未来发展趋势和状况进行描述和分析,形成科学假设和判断的过程。
统计分析
3
2024-05-23
基于综合评分预测篮球联赛战况
利用每支球队每场比赛的综合评分数据,建立模型以预测各队夺冠概率及联赛前四名。通过模型分析,对20支球队的竞技水平进行定性评估。
算法与数据结构
2
2024-05-21
Matlab基于BP神经网络的煤炭需求预测模型研究
Matlab技术基于双隐层BP神经网络,针对中国煤炭需求进行了模拟分析和预测,通过实际数据验证和分析,预测了未来五年的煤炭需求量。探讨了影响煤炭需求的复杂因素及其非线性关系,提出了一种基于神经网络的高精度预测方法,为煤炭资源管理提供了重要决策支持。
Matlab
2
2024-07-30
DFT研究预测HDAC7抑制活性的多元回归模型
本研究使用密度泛函理论(DFT)描述符,对18个异羟肟酸分子进行了QSAR分析,以预测其对组蛋白脱乙酰基酶7的抑制活性。研究采用了主成分分析(PCA)、上升层次分类(AHC)、线性多元回归(LMR)和非线性多元回归(NLMR)方法。通过DFT计算获得了异羟肟酸化合物的结构和性质信息。多元统计分析建立了两个量子描述子模型(MLR模型和MNLR模型),重点关注电子亲和力(AE)、OH键振动频率(ν(OH))和NH键振动频率(ν(NH))。LMR模型显示出良好的预测性能(R2 = 0.9659,S = 0.488,F = 85,p值
统计分析
0
2024-08-08