研究了在高校绩效工资分类管理中改进的聚类算法,提出了一种新方法来寻找初始聚类中心,通过距离与密度的结合确定初始聚类中心,避免了重复计算,从而提高了聚类的准确率。
高校绩效工资分类管理中改进的聚类算法研究
相关推荐
Kmeans聚类算法改进研究.pdf
Kmeans算法在模式识别和数据挖掘等领域应用广泛。针对高维度数据聚类效果差的问题,李森林和蒋启明提出了一种改进方法。
数据挖掘
5
2024-04-30
自适应谱聚类算法改进
通过提出一种自适应谱聚类算法改进方案,在传统谱聚类算法的基础上,通过自适应调整核函数参数和聚类簇数,提升了算法对任意形状样本空间的聚类性能,实验验证了改进算法的有效性。
数据挖掘
3
2024-05-25
数据挖掘中聚类算法比较研究
聚类分析是数据挖掘中的关键技术之一。探讨了数据挖掘中聚类算法的典型要求和不同类别的聚类方法。
数据挖掘
0
2024-08-24
研究论文改进频繁模式聚类算法以优化网站结构
分析了现有频繁模式聚类算法存在的问题,并提出了改进距离函数。在基于模式聚类函数的基础上,引入了压缩偏序算法(FCWSO算法)。实验表明,该算法能够高效、高质量地压缩频繁序列模式,生成更为精简、信息量更大的模式,从而提升发现频繁访问序列的效果。
数据挖掘
0
2024-09-14
MATLAB中聚类分类算法中不同的距离计算方式
在进行数据挖掘和机器学习的过程中,聚类是一种常见的无监督学习方法,其主要目标是将相似的数据点分组在一起形成簇。聚类算法的效果很大程度上取决于所采用的距离度量方式,因为距离度量决定了数据点之间的相似程度。MATLAB作为一种强大的科学计算软件,提供了多种距离计算方法来支持不同的聚类需求。详细介绍了MATLAB中几种常用的聚类算法距离计算方法,包括欧氏距离、标准欧氏距离、马氏距离、绝对值距离和闵科夫斯基距离。
算法与数据结构
0
2024-09-16
研究报告Web页面分类中模糊聚类的最大树算法应用
通过分析Web日志记录的客户访问情况,建立了Web页面的用户访问矩阵。在此基础上构建了模糊相似矩阵,并利用最大树算法进行了有效的页面聚类。研究表明,使用模糊相似矩阵进行聚类可避免构建模糊等价矩阵所需的大量计算,具备处理高维数据的简便快速特点。
数据挖掘
1
2024-07-16
聚类算法研究进展综述
总结聚类算法的研究现状及新进展
分析代表性算法的算法思想、关键技术和优缺点
对典型算法进行实验对比,分析不同数据集和算法的聚类情况
提出聚类分析的研究热点、难点和待解决问题
数据挖掘
2
2024-05-25
改进的点对点环境下的聚类算法优化方案
在P2PK-Means算法的基础上,提出了一种名为DK-Means的改进数据聚类算法。该算法通过在直接相连的节点间进行局部通信,利用本地存储的直接相邻节点聚类信息来降低整体通信开销,避免了全局同步的需要。与P2PK-Means算法相比,实验结果显示改进后的算法显著减少了通信量,且在聚类准确度上无损失。随着节点数量增加,DK-Means算法的通信需求增长速度明显低于P2PK-Means算法。
数据挖掘
0
2024-09-22
探索WEKA中的聚类算法
WEKA中的聚类算法
WEKA是一款强大的数据挖掘工具,提供了丰富的聚类算法,用于在数据集中发现隐藏的模式和结构。
常用聚类算法
k-Means: 将数据划分为k个簇,每个簇由其中心点表示。
层次聚类:构建一个树状结构,表示数据点之间的层次关系。
EM算法:基于概率模型,用于发现数据中的潜在类别。
DBSCAN:基于密度的算法,用于识别具有不同密度和形状的簇。
聚类分析应用
客户细分: 将客户群体划分为不同的类别,以便进行 targeted marketing.
异常检测: 识别数据集中与整体模式不符的异常点。
图像分割: 将图像划分为不同的区域,以便进行图像分析和理解。
WEKA的优势
用户友好界面: WEKA 提供了图形化界面,方便用户进行聚类分析。
算法多样性: WEKA 支持多种聚类算法,用户可以根据数据特点选择合适的算法。
开源免费: WEKA 是开源软件,用户可以免费使用和修改。
数据挖掘
3
2024-05-15