深入探讨了聚类分析及其算法的性能比较,结合儿童生长发育数据,详细阐述了改进的K-means算法在数据挖掘中的实际应用。
研究报告-基于聚类分析的K-means算法研究及应用
相关推荐
K-means聚类算法原理与应用研究
K-means 的聚类思路蛮清晰,逻辑简单,实际用起来还挺顺。在做入侵检测或者数据分类时,真能省不少事。嗯,推荐几个资源给你,文章配了代码,跑一跑基本就能上手。
K-means 聚类算法的核心思想其实就像“分小组”,先随机挑几个中心点,看谁离谁最近,就先归个类。中心点再重新算,反复几轮后,聚类效果就比较靠谱了。
如果你想搞清楚原理,《详解 K-means 聚类算法》这篇写得还挺细,流程图+案例都齐,适合初学者。
要是更关注实战,比如做入侵检测,这篇关于优化 K-means 的入侵检测研究就蛮有意思,讲了怎么改进分类准确率。
动手党别错过这几个实现:Python 版本比较好懂,写法直白;Matl
数据挖掘
0
2025-06-18
基于K-means算法的负荷数据曲线聚类分析
该方法应用于负荷数据曲线分析,能够对输入的曲线数据进行聚类分析,并输出分类结果和可视化图表。其主要过程包括数据均一化、曲线平滑、特殊值处理、利用DB值评价聚类结果以及自动选择最佳聚类数等,能够有效地处理曲线数据并实现精准分类。
算法与数据结构
9
2024-05-23
基于SSE度量的K-means聚类算法聚类个数自适应研究
K均值聚类算法是数据挖掘中常见的无监督学习方法,其簇间数据对象越相异、簇内数据对象越相似,说明聚类效果越好。然而,确定簇个数通常需要有经验的用户设定参数。提出了一种基于SSE和簇的个数度量的自适应聚类方法(简称:SKKM),能够自动确定聚类个数。通过对UCI数据集和仿真数据的实验验证,结果表明改进的SKKM算法能够快速准确地确定数据对象中的聚类个数,提升了算法性能。
数据挖掘
10
2024-07-18
研究论文基于Hadoop的K-Means聚类算法优化与实施
针对传统K-Means聚类算法在处理海量数据时的局限性进行了探讨,特别是其对异常离群点数据的敏感性。结合Hadoop云计算平台和MapReduce并行编程框架,我们提出了一种优化方案,以改善聚类效果和处理效率。
数据挖掘
15
2024-08-14
k-means聚类算法及matlab代码的应用
在机器学习与数据挖掘实验中,我们探索了k-means聚类算法的应用,使用Matlab实现了相关代码。实验涵盖了多源数据集成、清洗和统计,以及数据的数值量化处理。我们通过C/C++/Java程序实现了两个数据源的合并,并解决了数据的一致性问题。实验结果包括了学生家乡在北京的课程平均成绩计算,以及对广州和上海女生体能测试成绩的比较。此外,我们还分析了学习成绩与体能测试成绩之间的相关性。
Matlab
13
2024-08-03
研究论文-基于K-means的有限增量聚类算法及其k值探讨.pdf
基于K-means的有限增量聚类算法及k值研究,姚文心,卢志国,聚类算法在数据挖掘、模式识别和信息抽取等领域广泛应用。随着互联网技术的进步,数据呈现动态增长特性。探索如何有效聚类动态数据是当前研究的关键问题。
数据挖掘
12
2024-07-29
k-means聚类算法的应用与特点分析
聚类分析,又称群分析,是研究分类问题的一种统计分析方法,也是数据挖掘的重要算法之一。k-means是其中一种经典的聚类算法,通过度量向量间的相似性来组织数据。它基于样本点之间的距离进行聚类,将数据分为若干个类别,每个类别内部的样本点相似度高于不同类别的样本点。k-means算法在数据挖掘和模式识别中具有广泛的应用。
数据挖掘
14
2024-07-16
详解k-means聚类算法
k-means聚类算法是一种常用的数据分析技术,特别是在大数据处理中具有显著优势。深入解析了k-means算法及其基于mapreduce的实现。
Hadoop
14
2024-09-14
K-means聚类算法实现
K-means 的聚类逻辑蛮清晰的,主要靠计算“谁离谁近”,把数据点分到最近的中心里。你要是手上有一堆样本,想看看有没有分组规律,用它还挺合适。孤立点也能得比较稳,结果还挺有参考价值。
K-means的实现过程不算复杂,核心就两个步骤:先随机选中心,不停更新,直到不再变。嗯,像在调频收音机,调到信号位置为止。要注意初始中心点选得不好,聚类效果就偏了。
如果你是用Python写的,可以直接撸个小脚本试试,比如下面这样:
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3)
kmeans.fit(data)
别的语言也有,
数据挖掘
0
2025-07-01