深入探讨了聚类分析及其算法的性能比较,结合儿童生长发育数据,详细阐述了改进的K-means算法在数据挖掘中的实际应用。
研究报告-基于聚类分析的K-means算法研究及应用
相关推荐
基于K-means算法的负荷数据曲线聚类分析
该方法应用于负荷数据曲线分析,能够对输入的曲线数据进行聚类分析,并输出分类结果和可视化图表。其主要过程包括数据均一化、曲线平滑、特殊值处理、利用DB值评价聚类结果以及自动选择最佳聚类数等,能够有效地处理曲线数据并实现精准分类。
算法与数据结构
2
2024-05-23
基于优化K-Means算法的入侵检测技术研究
随着数据挖掘技术在入侵检测领域应用的不断深入,K-Means算法作为一种高效的聚类算法,其应用范围也在不断扩大。然而,传统的K-Means算法在处理入侵检测问题时存在一些不足,例如对初始聚类中心敏感、容易陷入局部最优解等。为了克服这些问题,本研究提出了一种改进的K-Means算法,用于入侵检测。该算法通过优化初始聚类中心的选取以及引入新的距离度量方法,提高了聚类结果的准确性和稳定性。实验结果表明,相比于传统的K-Means算法,改进后的算法在入侵检测方面具有更高的检测率和更低的误报率。
数据挖掘
3
2024-05-27
研究论文基于Hadoop的K-Means聚类算法优化与实施
针对传统K-Means聚类算法在处理海量数据时的局限性进行了探讨,特别是其对异常离群点数据的敏感性。结合Hadoop云计算平台和MapReduce并行编程框架,我们提出了一种优化方案,以改善聚类效果和处理效率。
数据挖掘
0
2024-08-14
研究论文-基于K-means的有限增量聚类算法及其k值探讨.pdf
基于K-means的有限增量聚类算法及k值研究,姚文心,卢志国,聚类算法在数据挖掘、模式识别和信息抽取等领域广泛应用。随着互联网技术的进步,数据呈现动态增长特性。探索如何有效聚类动态数据是当前研究的关键问题。
数据挖掘
2
2024-07-29
k-means聚类算法及matlab代码的应用
在机器学习与数据挖掘实验中,我们探索了k-means聚类算法的应用,使用Matlab实现了相关代码。实验涵盖了多源数据集成、清洗和统计,以及数据的数值量化处理。我们通过C/C++/Java程序实现了两个数据源的合并,并解决了数据的一致性问题。实验结果包括了学生家乡在北京的课程平均成绩计算,以及对广州和上海女生体能测试成绩的比较。此外,我们还分析了学习成绩与体能测试成绩之间的相关性。
Matlab
0
2024-08-03
k-means聚类算法的应用与特点分析
聚类分析,又称群分析,是研究分类问题的一种统计分析方法,也是数据挖掘的重要算法之一。k-means是其中一种经典的聚类算法,通过度量向量间的相似性来组织数据。它基于样本点之间的距离进行聚类,将数据分为若干个类别,每个类别内部的样本点相似度高于不同类别的样本点。k-means算法在数据挖掘和模式识别中具有广泛的应用。
数据挖掘
2
2024-07-16
K-means聚类分析中如何确定最佳类别数
在k-means聚类分析中,类别数并非预先确定,而是需要用户根据实际情况进行选择。Matlab提供了kmeans函数,用户需要输入点集、类别数和距离定义,函数即可执行聚类分析并返回结果。确定最佳类别数是k-means算法的关键步骤之一,需要结合实际问题和数据特点进行选择。
算法与数据结构
3
2024-05-19
基于SSE度量的K-means聚类算法聚类个数自适应研究
K均值聚类算法是数据挖掘中常见的无监督学习方法,其簇间数据对象越相异、簇内数据对象越相似,说明聚类效果越好。然而,确定簇个数通常需要有经验的用户设定参数。提出了一种基于SSE和簇的个数度量的自适应聚类方法(简称:SKKM),能够自动确定聚类个数。通过对UCI数据集和仿真数据的实验验证,结果表明改进的SKKM算法能够快速准确地确定数据对象中的聚类个数,提升了算法性能。
数据挖掘
2
2024-07-18
k-means算法优缺点
优点:- 简单高效- 大数据集处理高效- 对密集簇效果较好
缺点:- 必须预先确定簇数(k)- 对初始值敏感,不同初始值可能导致不同结果- 不适用于非凸形或大小差异大簇- 对噪声和孤立点敏感
数据挖掘
4
2024-05-01