在处理主库改变时,特别是在STANDBY_FILE_MANAGEMENT参数设置为MANUAL的情况下,需要手动添加数据文件或创建表空间。如果主库新增任何数据文件,需手动复制到备库,确保数据同步。此外,若主备库使用祼设备,需注意路径名转换以及确保备库同样具备相应的祼设备路径。
当主库需要手动介入时的数据处理策略
相关推荐
Spark与Hive的高效数据处理策略
在大数据领域,Spark和Hive是两个关键工具。Spark以其高效的计算性能和强大的数据处理API,成为了大数据处理的首选框架。与此同时,Hive以其SQL接口和对大规模数据仓库的支持,深受数据仓库和ETL工作的青睐。深入探讨了如何利用Spark 2.1的API操作Hive表,并通过源码分析解析其内部机制。文章详细介绍了在Spark中配置Hive的元数据存储位置和配置文件路径的步骤。同时,展示了通过SparkSQL接口读取和写入Hive表的示例,以及底层实现涉及的关键组件。
spark
0
2024-08-08
优化Oracle大数据处理性能的有效策略
Oracle分区技术是提升大数据处理效率的重要工具。通过合理配置和优化,可以显著提升系统性能,确保数据操作的高效执行。
Oracle
0
2024-08-24
Matlab数据处理磁引力数据处理代码
Matlab数据处理文件夹“ process_data”包含用于执行所有处理的代码“ process_data.m”。文件夹“ plot”包含克里斯汀·鲍威尔(Christine Powell)编写并修改的宏“ plot_cen_maggrav”。代码可用于下降趋势、上升延续、极点减小、垂直和水平导数。
Matlab
0
2024-09-28
Spark数据处理
本书介绍了Spark框架在实时分析大数据中的技术,包括其高阶应用。
spark
3
2024-05-13
简化的Python数据处理示例
这是一个初步尝试数据处理的示例,使用Python进行简单的数据清洗和转换。
算法与数据结构
1
2024-07-15
Oracle中的JSON数据处理
在Oracle数据库中,最新的PL/JSON版本1.0.5已于2014年11月30日发布,这个更新在1.0.4版本发布三年后推出。安装后,您可以访问一系列包,包含官方文档和示例PDF。
Oracle
0
2024-09-13
大数据处理实战
掌握Hadoop和Spark技巧,轻松处理大数据!
Hadoop
8
2024-05-13
海量数据处理流程
通过数据采集、数据清洗、数据存储、数据分析、数据可视化等步骤,有序处理海量数据,助力企业深入挖掘数据价值,提升决策效率。
DB2
2
2024-05-15
GHCND 数据处理脚本
这是一组用于处理《全球历史气候学网络日报》(GHCND)数据的 Matlab 脚本。GHCND 数据可从以下网址获取:https://www.ncei.noaa.gov/。
这些 Matlab 脚本需要根据您的具体需求进行自定义,并不能直接运行。一些脚本直接源自或修改自 Matlab Spring Indices 代码包(Ault 等人,2015)。
文件使用顺序:
mk_ghcnd.m: 处理 GHCND 元数据文件 (ghcnd-stations.txt)。
mk_ghcnd_inv.m: 处理 GHCND 库存文件 (ghcnd-inventory.txt)。
过滤器GHCND.m: 筛选和过滤《全球历史气候学网络日报》数据。
与雪相关的代码:
专为特定项目编写 (Protect Our Winters & REI, 2018-)。
可多次使用。
也用于使用本地化的构建类似物 (LOCA) 数据更新《新罕布什尔州气候评估报告》 (Pierce 等人, 2014)。
联系方式: [此处填写联系方式]
Matlab
2
2024-05-20