现有的关联规则推荐技术在数据提取时主要侧重于关联规则的提取效率,缺乏对冷、热门数据推荐平衡性的考虑和有效处理。为了提高个性化推荐效率和推荐质量,平衡冷门与热门数据推荐权重,对关联规则的Apriori算法频繁项集挖掘问题进行了重新评估和分析,定义了新的测评指标推荐非空率以及k前项频繁项集关联规则的概念,设计了基于k前项频繁项集的剪枝方法,提出了优化Apriori算法且适合不同测评标准值的k前项频繁项集挖掘算法,降低频繁项集提取的时间复杂度。理论分析比较与实验表明,k前项剪枝方法提高了频繁项集的提取效率,拥有较高的推荐非空率、调和平均值和推荐准确率,有效地平衡了冷、热门数据的推荐权重。
支持推荐非空率的关联规则推荐算法优化
相关推荐
基于关联规则的Web页面推荐算法研究
基于关联规则的Web页面推荐算法研究
本研究针对电子商务网站,提出了一种基于Web日志挖掘的页面推荐算法。通过对用户访问序列进行分析,利用关联规则挖掘技术识别频繁访问模式,从而实现个性化的页面推荐。该算法能够满足实时推荐需求,并为电子商务网站的营销决策提供数据支持。
数据挖掘
2
2024-05-28
基于用户评分的关联规则挖掘协同推荐方法(2005年)
提出了一种创新的方法,利用数据挖掘技术应用于电子商务领域。介绍了新型的数据库存储结构AFP-树,并利用它挖掘频繁模式。进而通过项目之间的关联来实现协同推荐。最后详细说明了该推荐系统的工作过程。
数据挖掘
1
2024-07-17
基于关联规则的学习资源推荐系统设计及MySQL实现
本项目设计一个基于关联规则的学习资源推荐系统,并利用MySQL进行实现。该系统涵盖了数据库课程设计的各个方面,是毕业设计的重要组成部分。
MySQL
0
2024-08-28
Apriori关联规则算法
Apriori算法是挖掘关联规则的经典算法,效率较高。本算法对Apriori算法进行了改进,提高了效率。
数据挖掘
2
2024-05-25
推荐系统的实时性与算法优化
推荐系统是一种广泛应用于电商、音乐流媒体、视频分享等领域的技术,通过分析用户的行为、兴趣和偏好,为用户推荐他们可能感兴趣的商品、服务或内容。
实时推荐系统:这种系统能够快速响应用户的最新行为并立即提供个性化的推荐。关键在于处理数据的速度和准确性,通常依赖大数据处理技术和实时计算框架,如 Apache Flink 或 Apache Storm。实时推荐系统提升用户体验,因为能即时反映用户的兴趣变化。
基于Storm的分布式在线推荐系统:Apache Storm 是一个开源的分布式实时计算系统,适合处理无界数据流。在推荐系统中,Storm实时处理用户行为数据,将这些信息转化为用户兴趣模型,保证高效率和高可用性。它可以与其他数据存储和消息队列集成,构建完整的实时推荐解决方案。
基于混合算法的推荐系统:结合多种推荐策略以提高推荐的准确性和多样性。将 协同过滤 方法与基于内容的方法相结合,甚至引入机器学习算法(如矩阵分解、深度学习),平衡预测准确性和新颖性。
这三份文献涵盖了推荐系统的实时性、分布式处理和混合算法,对理解推荐系统的设计、实现和优化具有重要价值。学习这些知识将有助于开发更高效、更精准的推荐系统,提升用户满意度和平台业务表现。
spark
0
2024-11-04
优化新闻推荐算法训练数据集
新闻个性化推荐算法所需的训练数据集包括用户ID、新闻ID、浏览时间、新闻标题、详细内容和发布时间。
算法与数据结构
0
2024-09-13
算法书籍推荐
《Matlab算法大全》为入门算法学习提供全面指导。
Matlab
4
2024-05-12
基于Spark推荐算法的电影推荐系统设计与实现
本项目利用Spark推荐算法开发了一套电影推荐系统,后端采用了SpringBoot,前端则使用微信小程序进行展示。系统涵盖了数据处理、推荐算法、分布式计算、微服务架构和移动端开发等多个IT领域知识点。具体包括Spark的RDD和DataFrame API用于高效处理大规模用户行为数据,以及协同过滤、矩阵分解等经典推荐算法的应用。SpringBoot框架简化了后端开发,提供了高内聚低耦合的特性,而微信小程序则通过优秀的用户体验和轻量级特性增强了前端展示。
spark
2
2024-07-29
关联规则数据挖掘算法
Apriori算法Apriori算法是关联规则数据挖掘算法的代表,它使用迭代的方法生成候选频繁项集,并使用支持度和置信度阈值来过滤非频繁项集。
Apriori算法的改进Apriori算法的改进版本包括:- FP-Growth算法:使用了一种基于FP树的数据结构,可以更高效地生成频繁项集。- Eclat算法:采用了一种基于集合论的方法,可以并行生成频繁项集。- PrefixSpan算法:专用于序列数据,可以发现序列模式。
数据挖掘
2
2024-05-25