Pastas是一个用于处理、模拟和分析水文时间序列的开源Python软件包。其面向对象的结构使得用户能够快速实现新的模型组件,并利用内置的优化、可视化和统计分析工具进行时间序列模型的创建、校准和分析。详细文档和示例可以在Pastas的专用网站上找到,例如在文档网站的examples目录中。使用Pastas的工作示例笔记本可以在MyBinder中查看和编辑,专用的GitHub存储库还提供了使用Pastas的出版物列表。用户可以通过Github讨论解决与Pastas相关的问题,并提出错误、功能请求或其他改进,提交问题或拉取请求将仅在存储库的开发分支(dev)上进行接受。查看文档网站上的“开发人员”部分可以获取有关如何为Pastas做出贡献的更多信息。
Pastas 水文时间序列分析的Python开源框架
相关推荐
ARMA模型时间序列分析Python代码
使用Python代码对时间序列数据进行ARMA模型分析。
统计分析
6
2024-04-29
Python编程中的SARIMA模型时间序列分析
在Python编程中,使用SARIMA模型进行时间序列数据分析是一种常见的方法。这种模型可以在jupyter notebook等编辑器中实现,适合想要了解SARIMA模型工作流程和代码实现的朋友。
数据挖掘
3
2024-07-16
Python中ARIMA模型的时间序列数据分析
在Python环境下,利用ARIMA模型进行时间序列数据分析是一种常见的方法。这种分析通常在jupyter notebook等编辑器中完成,适合想深入了解ARIMA模型和其代码实现的人群。
统计分析
2
2024-07-17
Python-STUMPY时间序列数据挖掘的高效Python库
Python-STUMPY是一个专为时间序列数据挖掘设计的高效、灵活的开源库,在Python开发社区中被广泛应用于数据分析任务。时间序列分析是研究数据随时间变化趋势的关键方法,适用于金融、医疗、物联网(IoT)、工业4.0等众多领域。STUMPY的核心功能在于发现时间序列中的模式,有助于用户识别潜在的结构、异常和周期性。该库采用矩形最大值乘积(Matrix Profile)方法作为核心算法,这种方法在统计学上非常有效,可以高效处理大规模数据集,并保持较低的内存需求。使用STUMPY进行时间序列挖掘时,常见步骤包括数据预处理、计算Matrix Profile、模式发现、模式解释以及应用与扩展。在\"TDAmeritrade-stumpy-f5625e9\"这个压缩包中,可能包含了STUMPY库的一个特定版本或与TDAmeritrade相关的示例代码。
数据挖掘
0
2024-08-28
R语言时间序列分析
利用全国卷烟销量数据,采用R语言进行时间序列分析。分别构建ARIMA季节时间序列模型、Holtwinters指数平滑模型,并评估模型准确性。提供完整R代码和数据集。
算法与数据结构
4
2024-05-13
时间序列分析预测法
时间序列分析预测法分为三类:
平滑预测法:采用移动平均和指数平滑方法,平滑原始数据趋势线。
趋势外推预测法:利用历史数据拟合趋势函数,预测未来趋势。
平稳时间序列预测法:估计模型参数,根据历史数据预测未来值。
算法与数据结构
4
2024-05-24
Matlab时间序列分析代码
时间序列数据分析的Matlab实现代码。
Matlab
1
2024-07-27
时间序列分析资源包
本资源包包含教学PPT和MATLAB实现代码,详细介绍了时间序列的基本理论。时间序列是按时间顺序排列的统计指标数列,主要用于基于历史数据预测未来走势。经济数据通常以时间序列形式呈现,时间单位可以是年、季度、月等。
Matlab
0
2024-09-28
水文序列基流分割Matlab程序
这是一个使用Matlab语言编写的程序,用于进行水文序列基流分割。
Matlab
1
2024-05-19