软件项目中需求演化频繁,对项目成功与否有重要影响。准确估算需求变更对项目的影响,能有效降低项目失败风险。如何量化新增需求的影响尤为关键。提出一种基于数据挖掘的方法,通过对新增需求与已有需求进行聚类分析,能够较为准确地预测新增需求将导致的代码量变化。
基于数据挖掘的软件需求变更量化分析方法
相关推荐
古物掠夺风险评估:基于拍卖数据的量化分析
艺术市场的隐秘性使得发展中国家的文物掠夺和贩运难以评估。由于缺乏来源国交易的直接信息,拍卖销售为我们提供了古物和原始艺术品的市场价值和交易量的参考。拍卖行公开发布拍卖结果,并允许通过网站访问销售档案。在线访问销售档案可以创建大量关于世界各地拍卖的成交价数据。销售档案还包含艺术品的详细描述,其中可以识别艺术品的地理来源。通过对成交价格和原产地的销售档案进行数据挖掘,可以按来源国分析市场价值。这种分析评估了相对市场价值,从而有助于评估跨发展中国家掠夺的相对风险。
数据挖掘
13
2024-05-12
基于数据挖掘的量化投资技术与应用
本书系统阐述数据挖掘技术在量化投资领域的应用。内容涵盖数据挖掘基础知识、核心技术方法及量化投资实践。
首先,本书剖析数据挖掘与量化投资的内在联系,阐明数据挖掘的概念、流程、内容及常用工具。
其次,深入讲解数据挖掘的核心技术方法,包括数据准备、数据探索、关联规则、数据回归、分类、聚类、预测、诊断、时间序列分析、智能优化等,并结合具体案例阐述其在量化投资中的应用。
最后,本书聚焦数据挖掘技术在量化投资中的综合应用,以统计套利、配对交易、程序化交易等为例,详细介绍策略挖掘、优化及系统构建方法。
数据挖掘
8
2024-05-29
基于政策文本量化分析的安徽省科技成果转化政策演进研究
科技成果转化是连接科技创新与经济发展的桥梁,对促进区域经济发展和提升产业竞争力至关重要。为探究安徽省科技成果转化政策的演进规律及特征,本研究采用政策统计分析和多维分析方法,以 2001 年至 2018 年安徽省发布的 101 项科技成果转化政策文本为样本,对其时间分布、政策类型、决策主体布局以及政策工具运用等方面进行了系统分析。研究发现,安徽省科技成果转化政策在时间上呈现阶段性特征,在政策类型上涵盖了供给侧、需求侧以及环境优化等多个方面,决策主体呈现多元化趋势,政策工具运用也日趋多样化。基于以上分析,本研究揭示了安徽省科技成果转化政策演进过程中存在的问题,并提出了相应的政策建议,以期为安徽省未
统计分析
12
2024-05-24
单机游戏营销数据挖掘的关键需求分析
背景:数据挖掘的目的是从大量看似杂乱的数据中提取信息,揭示单机游戏营销中的关键需求。数据挖掘是有目的地收集和分析数据的过程,支持质量管理体系。在单机游戏的整个生命周期中,从市场调研到售后服务及最终处理,数据分析过程至关重要,以提升各个阶段的有效性。
SQLServer
9
2024-07-28
国内数据挖掘工具综述及优化分析
对国内数据挖掘工具进行分类、介绍与开发进行综述,并比较评价其优劣。
数据挖掘
9
2024-07-16
软件需求分析PPT的顶层数据流图
考试中心的顶层数据流图显示了考生和考务处理系统之间的信息流动。包括考生通知单、准考证、成绩清单和统计分析表等关键数据。
统计分析
7
2024-08-09
候选序列生成:基于关联分析的数据挖掘方法
在数据挖掘领域,关联分析是一种重要技术,而候选序列生成是关联分析中的关键步骤。
为了有效地生成候选序列,一种常见的方法是合并频繁的较短序列。具体来说,通过合并两个频繁的 (k-1)-序列,可以产生候选的 k-序列。
为了避免重复生成候选序列,可以采用类似于 Apriori 算法的策略。例如,只有当两个 (k-1)-序列的前 k-2 项相同时,才进行合并操作。
以下示例演示了如何通过合并频繁 3-序列来生成候选 4-序列:
合并 <{1 2 3}> 和 <{2 3 4}>,得到 <{1 2 3 4}>。
由于事件 3 和事件 4 属于第二个序列的不同元素,因此它们在合并后
算法与数据结构
9
2024-05-23
数据优化分析
优化Spark性能- 分配更多资源- 调节任务并行度- 持久化公用RDD- 广播大变量- 使用Kryo序列化
spark
10
2024-04-30
数据挖掘助推量化投资
利用数据挖掘技术,挖掘数据背后的价值,为量化投资提供科学依据和策略支撑。
数据挖掘
15
2024-05-01