在数据挖掘领域,发现频繁项集是关键问题之一。提出了一种名为FP-SPMA的新型算法,基于FP-Tree结构,通过共享前缀和前瞻剪枝,显著提升了算法效率。相较于传统方法,该算法无需递归构造条件模式树,有效压缩了事务数据库。
数据挖掘论文研究基于FP-Tree的新型频繁项集挖掘算法
相关推荐
基于有序FP-tree的最大频繁项集挖掘
基于有序FP-tree的最大频繁项集挖掘
概念提出: 完全前缀路径、有序FP-tree
有序FP-tree构建: 根据数据项所在层级建立
数据表示: 利用有序FP-tree表示数据
算法提出: MFIM算法,利用有序FP-tree中的完全前缀路径进行最大频繁项集挖掘
算法优化: 利用完全前缀路径对挖掘算法进行优化
实验结果: 对于浓密数据集中的长模式挖掘具有良好性能
数据挖掘
2
2024-05-25
HPFP-Miner 新型并行频繁项集挖掘算法研究论文
HPFP-Miner是一种创新的并行频繁项集挖掘算法,针对数据挖掘中的重要基础问题进行了深入研究。该算法由陈晓云和何艳珊提出,通过优化数据扫描过程,显著提升了效率。
数据挖掘
2
2024-07-23
提高频繁项集挖掘效率的MAXFP-Miner基于FP-Tree的创新方法
为了提高频繁项集的挖掘效率,提出了MAXFP-Miner,这是基于FP-Tree的最大频繁项集挖掘算法。首先建立FP-Tree,然后在此基础上构建MAXFP-Tree,其中包含所有最大频繁项集,大幅缩小了搜索空间并显著提高了算法的效率。算法分析和实验表明,MAXFP-Miner特别适用于挖掘稠密型和长频繁项集的数据集。
数据挖掘
1
2024-07-14
并行频繁项集挖掘算法的优化研究
传统的挖掘频繁项集的并行算法存在节点间负载不均衡、同步开销过大、通信量大等问题。针对这些挑战,提出了一种名为多次传送重新分配数据的并行算法(MRPD)。在MRPD算法中,第l步将数据库重新划分成多个组,并根据各节点的需求多次传送这些组。各节点在异步地计算完整组后,可以得到所有频繁项集。理论分析和实验结果均表明,MRPD算法在优化并行频繁项集挖掘中具有显著效果。
数据挖掘
2
2024-07-16
FP增长算法:一种高效的频繁项集挖掘技术
FP增长算法是一种用于发现频繁项集的数据挖掘技术,它摒弃了传统的“产生-测试”范式,而是利用一种名为FP树的紧凑数据结构来组织数据,并直接从FP树中提取频繁项集。
数据挖掘
2
2024-05-16
基于有向项集图的最大频繁项集挖掘算法
本算法基于有向项集图存储事务数据库中频繁项集信息,采用三叉链表结构组织有向项集图,并在此基础上提出最大频繁项集挖掘算法。该算法一次扫描事务数据库,有效减少I/O开销,适用于稀疏和稠密数据库的最大频繁项集挖掘。
数据挖掘
2
2024-05-31
Data Mining Understanding FP-Tree
数据挖掘中的FP树原理与应用
一、引言
在大数据处理与分析领域,数据挖掘技术扮演着至关重要的角色。其中,频繁模式挖掘是数据挖掘中的一个核心问题,它找出数据库中出现频率高于某个阈值的项集。FP树(Frequent Pattern tree)作为一种高效的数据结构,被广泛应用于频繁模式挖掘中。将围绕“数据挖掘FP树”的主题,深入探讨其基本概念、构建过程以及应用场景,并结合给定的部分内容进行具体分析。
二、FP树的基本概念
FP树是一种压缩且便于挖掘频繁模式的数据结构。通过这种结构可以有效地减少数据扫描次数,从而提高挖掘效率。在构建FP树的过程中,需要定义一个最小支持度计数(min_sup_count),用于筛选出频繁项集。本例中设定的min_sup_count=2,意味着只有出现次数不低于2次的项才能被认为是频繁项。
三、FP树的构建过程
初始化数据库:首先根据给定的事务数据库初始化数据库,即事务列表。在本例中,我们有如下事务记录:
T100: I1, I2, I5
T200: I2, I4
T300: I2, I3
T400: I1, I2, I4
T500: I1, I3
T600: I2, I3
T700: I1, I3
T800: I1, I2, I3, I5
T900: I1, I2, I3
构建头表:根据事务数据库构建头表,记录每个项及其出现的总频次。本例中的头表为:
I2: 7
I1: 6
I3: 6
I4: 2
I5: 2
构建FP树:接下来,按照事务的顺序,将每个事务添加到FP树中。在添加过程中,如果某项不在当前的FP树中,则创建一个新的节点;如果已在树中,则更新该节点的计数值。需要注意的是,在添加过程中要保证树的紧凑性,即相同的项尽可能连接在一起。
四、条件模式基与条件FP树
为了进一步挖掘涉及特定项的频繁模式,FP算法引入了条件模式基(Conditional Pattern Base, CPB)和条件FP树(Conditional FP Tree, CFT)。条件模式基是指包含特定项的所有事务集合,而条件FP树则是根据条件模式基构建的FP树。- 涉及I5的条件模式基及条件FP树:- 条件模式基:{(I2
数据挖掘
0
2024-10-31
MFWSR数据流上的频繁闭项集挖掘算法
MFWSR:数据流上的频繁闭项集挖掘算法,陶克,王意洁,数据流上频繁项集挖掘是数据挖掘有效手段之一,是相联规则挖掘的重要基础。频繁闭项集挖掘的结果更简洁而又能保留所有频繁项集的结果。
数据挖掘
0
2024-08-08
基于滑动时间衰减窗口的网络流频繁项集挖掘算法
网络流数据频繁项集挖掘是进行网络流量分析的基础。STFWFI 算法采用基于字典顺序前缀树 LOP-Tree 的方法进行频繁项集挖掘,并引入了更符合网络流特性的滑动时间衰减窗口模型,从而有效降低了时间和空间复杂度。此外,该算法还提出了一种基于统计分布的节点权值计算方法 SDNW,替代了传统的统计方法,提高了网络流节点估值的精确度。实验结果表明,STFWFI 算法在网络流频繁项集挖掘中表现出良好的性能。
数据挖掘
4
2024-05-20