数据挖掘初探0.9版@2000,适合对此感兴趣的朋友们进行学习和研究。
数据挖掘初探.pdf
相关推荐
初探数据挖掘
数据挖掘是一门关注如何从大量数据中提取有用信息的领域。
数据挖掘
0
2024-10-10
数据挖掘与信息检索初探
初步了解数据挖掘的基本概念、功能、目标和方法,探索信息检索的实质。
数据挖掘
2
2024-07-14
SPSS与Clementine数据挖掘初探
SPSS与Clementine数据挖掘技术的基础入门,介绍了它们在数据分析和挖掘领域的应用和基本原理。
数据挖掘
2
2024-07-17
动态规划初探及其应用案例.pdf
动态规划初探及其应用案例.pdf
算法与数据结构
0
2024-08-28
初探数据挖掘的基本概念与技术
这本书由韩佳炜老师编写,适合初学者了解数据挖掘的基本内容。
数据挖掘
2
2024-07-13
数据挖掘PDF资源合集
数据挖掘是从大量数据中提取有价值知识的过程,结合了计算机科学、统计学和机器学习等多个领域的技术。在这个PDF资源合集中,我们可以深入探讨数据预处理的重要性,包括数据清洗、数据集成、数据转换和数据减少。此外,还涵盖监督学习、无监督学习和半监督学习方法,如决策树、聚类和关联规则学习。深度学习模型如神经网络、卷积神经网络和循环神经网络在数据挖掘中的应用也将被详细探讨。开源工具和库如R语言的caret和tidyverse,Python的pandas、numpy、scikit-learn,以及专有软件如SAS、SPSS和Tableau也将被介绍。数据可视化工具如matplotlib、seaborn和ggplot2的使用方法也在合集中有所涉及。案例研究将展示数据挖掘技术在市场篮子分析、客户细分和预测模型构建中的实际应用。此外,还讨论了数据挖掘过程中的伦理和隐私问题,以及模型性能评估和数据挖掘竞赛参与的方法。最后,合集还展望了数据挖掘的未来发展趋势。
数据挖掘
2
2024-07-18
大数据集挖掘.pdf
这本书是由安纳德·拉贾拉曼和杰夫·乌尔曼多年来在斯坦福大学开设的一门为期一个季度的课程的教材演变而来。这门名为“网络挖掘”的课程CS345A原本是设计为高级研究生课程,但现在也对高年级本科生开放并且颇具吸引力。随着尤尔·莱斯科维奇加入斯坦福大学教职,我们对材料进行了大幅重新组织。他引入了一门新的课程CS224W,专注于网络分析,并且在CS345A中添加了新的内容,该课程已经更名为CS246。三位作者还推出了一门大规模数据挖掘项目课程CS341。本书现在包含了这三门课程中教授的内容。
算法与数据结构
1
2024-07-25
数据挖掘技术概述.pdf
数据挖掘技术概述####导论和数据挖掘概述数据挖掘是一门新兴的跨学科领域,从大量、不完整、噪声干扰、模糊不清及随机存在的实际数据中,提取事先未知但潜在有用的信息和知识。本书《数据挖掘技术概述》由韩家炜编写,基于J. Han和M. Kamber的原著,由Morgan Kaufmann出版社于2000年出版。 - 数据挖掘的重要性及应用场景:数据挖掘在于帮助企业和组织从海量数据中发现有价值的模式,这些模式可用于指导决策、优化业务流程和提高效率。 - 数据挖掘的定义:数据挖掘是一种从大数据中提取有用信息的过程,包括数据清洗、数据转换和应用数据挖掘算法等多个步骤。 - 适用数据类型:数据挖掘可应用于多种数据集,如关系数据库、数据仓库、事务数据库及高级数据库系统和应用。 ####数据挖掘的功能及模式- 概念/类描述:通过提取数据集特征描述或区分不同类别。 - 关联分析:发现数据项之间的有趣关联或相关性,如市场篮分析。 - 分类与预测:建立模型预测新数据的类别或值。 - 聚类分析:将相似数据对象分组形成聚类。 - 异常检测:识别与大多数对象显著不同的异常对象。 - 时间序列分析:分析数据随时间变化的模式。 ####数据挖掘的挑战及问题- 有趣模式的发现:数据挖掘可能会发现大量模式,但真正有价值的可能很少。 - 数据挖掘系统分类:根据不同标准,数据挖掘系统可分不同类型。 - 主要问题:如数据质量、隐私保护及挖掘结果解释是数据挖掘实践中的关键挑战。 ####数据仓库与OLAP技术- 数据仓库:为数据分析设计的数据库,包含历史数据并优化以支持快速查询。 - OLAP技术:在线分析处理,支持复杂多维数据分析。
数据挖掘
0
2024-09-16
Spark 初探
与您分享 Spark 的基础知识,共同探索大数据处理技术。
spark
3
2024-04-29