在数字化时代,CRISP-Data Mining和预测分析已成为处理大数据的重要工具。大数据的特征在于三个重要因素——容量、速度和可变性。讨论了用于数据挖掘的CRISP-DM和机器学习算法,这些算法能够开发预测模型并帮助管理决策。另一方面,讨论了电信行业的流失预测,这对于保留有价值的客户非常重要。借助流行的机器学习算法,例如决策树、聚类、神经网络、关联分析、支持向量机C5.0算法技术等,用于确定电信行业的客户流失率。研究结果表明,最常见的机器学习算法是决策树、神经网络和回归,它们被有效和高效地用于预测电信行业的客户流失。
整合数据挖掘与预测分析的协作管理决策方法研究论文
相关推荐
数据挖掘驱动下的预测决策方法探索
数据挖掘驱动下的预测决策方法探索
深入探讨如何利用数据挖掘技术来支持和优化预测决策过程。文章重点关注不同数据挖掘算法在预测模型构建中的应用,并分析其优缺点和适用场景。此外,还将探讨数据预处理、特征工程和模型评估等关键环节对预测精度和可靠性的影响。
数据挖掘
15
2024-05-25
信息分析方法与数据挖掘的交叉研究
(3)基于数据挖掘和知识发现的信息分析方法伴随着这些技术的发展,信息分析开始担负起发现知识、运用知识和提供服务的任务,即从海量原始数据中挖掘出决策所需的深层次信息,转化成知识并有效地加以运用。这些知识通常具备有效性、新颖性、潜在有用性、易于理解等特点。它们是集数据库和数据仓库技术、人工智能、机器学习、神经网络、统计学、模式识别、知识库系统、知识获取、信息提取、高性能计算和数据可视化等为一体的交叉性研究领域。
Access
14
2024-10-31
复杂网络与数据挖掘的研究比较与整合
在分析比较复杂网络与数据挖掘两种研究范式的基础上,强调数据挖掘研究需深入探索系统普适规律和内在机制发现;同时指出复杂网络可借助数据挖掘技术处理大数据,实现理论与数据的协同。此外,探讨了现有的复杂网络与数据挖掘交叉研究,并提出了范式整合的可能方向与途径。
数据挖掘
10
2024-07-16
数据驱动的商业智慧:探索数据挖掘在管理决策中的实际应用
数据驱动的商业智慧:探索数据挖掘在管理决策中的实际应用
深入探讨数据挖掘技术在商业管理和决策分析领域的实际应用案例,为管理者提供借鉴,助力企业利用数据资源提升决策效率和竞争力。
数据挖掘
9
2024-05-23
决策树数据挖掘论文合集
这份论文集汇集了有关数据挖掘中决策树的精选研究,为从事该领域的朋友们提供参考和启发。
数据挖掘
12
2024-05-23
数据挖掘论文打包应用与算法研究
数据挖掘的应用场景挺广的,涉及了从商业智能到医疗健康等各个领域。这份“数据挖掘论文打包”包含了 30 篇论文,展示了各种数据挖掘技术的应用和算法,涵盖了分类、聚类、回归等方法。你能看到像决策树、随机森林、支持向量机这样的算法在各个实际问题中的表现和优化。比如,决策树在分类任务中表现好,而 K-means 聚类算法在无监督学习中就挺常见。它还涵盖了数据预、模型评估、算法优化等内容,挺有的。无论你是数据新手还是老手,这份资源都能你加深理解数据挖掘的核心技术。是如果你对深度学习、Hadoop 或 Spark 之类的大数据框架有兴趣,这些论文里也会涉及到。,这份资源适合提升数据挖掘技能,不妨多看看,毕
数据挖掘
0
2025-07-02
数据挖掘领域的大量研究论文
这篇文章的第二部分,共三部分,涵盖了大量关于数据挖掘的研究论文。
数据挖掘
19
2024-07-17
开源项目数据挖掘框架分析论文研究
近年来,开源项目在计算机工程领域备受关注,越来越多的公司和个人开发者加入到贡献开源项目的行列。深入分析了基于数据挖掘的开源项目成熟度分析工具,探讨其在技术创新和社区贡献方面的重要作用。
数据挖掘
9
2024-08-21
数据挖掘商业管理与决策分析实例应用
数据挖掘的商业案例真的是越看越香。结合统计、AI 还有 IT 那一套,说实话,用好了,能让决策像开挂一样准。像是搞电子商务的,用户点击、浏览,网站优化、个性推荐,一套组合拳打下来,转化率嗖嗖地往上涨。里面讲到的监督学习、无监督学习也都有举例,比如随机森林、K-means啥的,讲得还挺透的。你要是做数据的,或者打算往商业智能那边靠,这资源值得一看,内容实在,干货不少。
数据挖掘
0
2025-06-22