资料分析常用方法包括:作图分析、统计分析、对比分析和建模分析。随着技术的进步,这些方法在工程领域中变形监测和数据处理中尤为重要。
工程数据分析常见方法变形监测与数据处理
相关推荐
Python数据分析与特征工程实战基于实际案例的数据处理技巧
当前,数据分析已广泛渗透各行各业,特别是以Python为工具的数据分析和挖掘正日益流行。然而,数据处理仍是数据分析和挖掘中最为耗时的环节之一。精通Python进行高效数据处理,显著提升数据分析和挖掘的效率。《Python数据分析与特征工程实战:基于实际案例的数据处理技巧》作为Python数据清洗实战入门课程的升级版本,以实际案例数据为教学对象,涵盖征信、电商、零售等领域。本课程深入浅出地解析Python数据处理和特征工程在实际项目中的应用,适合希望深入学习数据处理的学习者。课程内容详实,代码可读性强,实操性强,有助于解决工作和项目中的各类数据处理问题。课程目标包括熟悉数据处理流程和方法,熟练运用pandas和numpy等工具,以及提升独立完成数据处理阶段任务的能力。
数据挖掘
0
2024-08-04
MySQL数据恢复的三种常见方法
通过表备份来进行数据恢复。
当idb文件丢失但有备份表时,可以使用此方法。
使用MySQL的binlog来恢复数据。
MySQL
2
2024-07-30
数值分析与数据处理
科学计算语言Matlab的程序设计相关函数代码支持免费资源。
Matlab
1
2024-07-26
Stata数据处理与分析
大数据分析软件Stata,可用于详细处理和分析各类数据。
算法与数据结构
0
2024-08-04
常见大数据处理方法综述——算法总结.pdf
大数据处理领域常见的算法综述,包括hash算法、分治算法、bloom filter等。
算法与数据结构
0
2024-09-13
Excel 数据分析与管理:提升你的数据处理技能
学习如何利用 Excel 进行数据分析与挖掘,掌握高级应用技巧,让你的数据处理能力更上一层楼。
数据挖掘
2
2024-05-28
数据分析与处理的计算机方法
本教科书探讨了数据分析和处理方法,包含了多个课程的内容,例如:数据建模、数据挖掘、人工智能、决策支持系统和语义网络等。
第一章介绍了数据建模,这是创建信息系统的重要基础,并提供了不同的模型构建和验证方法。
第二章概述了电子数据交换 (EDI),重点介绍了 XML 语言。
第三章介绍了数据挖掘方法,包括选择适当的方法来解决不同类型任务。
第四章探讨了人工智能在计算机科学中的地位,讨论了人工智能方法可以解决的问题类别和人工智能系统的结构。
第五章概述了决策支持系统的概念,它利用了数据挖掘和人工智能方法,并介绍了不同类型的决策支持系统。
第六章展望了下一代 Web 3.0(语义网),介绍了其核心技术和在数据处理中的应用。
最后,第七章概述了计算机科学发展的当代趋势,包括技术发展及其对数据处理能力的影响,以及新兴的数据处理概念(如云计算)。
数据挖掘
3
2024-05-23
Matlab 9数据处理与分析技术
Matlab 9数据处理与分析技术正在成为科学研究和工程实践中的重要工具。
Matlab
0
2024-08-31
MapReduce分布式数据分析实战深入日志数据处理
MapReduce是一种分布式计算框架,由Google开发,专为处理和分析大规模数据集设计。它将大型任务分解为小型子任务,能在多台机器上并行处理并合并结果,提升计算效率。在本次MapReduce数据分析实战中,我们将深入学习如何使用MapReduce处理数据,特别是日志数据的分析。
Map阶段
Map阶段是数据处理的第一步。在示例代码中,map.py读取输入数据(即日志文件)并进行预处理。日志格式包含UUID(全局唯一标识符),用分隔符分隔。map.py通过遍历标准输入获取数据,去除首尾特定字符(如),并添加额外字段(如't1')作为值。这一过程生成“键值对”,是MapReduce的核心概念,将原始数据转化为可处理的格式。
Reduce阶段
Reduce阶段在red.py中完成。- 去重计数示例(distinct--red):此脚本用于计算唯一UUID,维护一个字典(res),键为UUID,值为出现次数。遇到新UUID则添加并设置计数为1,重复UUID则忽略,实现UUID的去重计数。- 分组统计示例:另一个red.py(group by)示例展示了基于字段(如日期stat_date、版本version、IPip)分组日志条目。脚本按行提取字段并更新计数,跟踪上一次的组别。若当前组别不同,则增加计数,从而实现按日期、版本、IP分组统计。
运行MapReduce任务
在实际运行中,将本地Python脚本上传到Hadoop集群,通过hadoop fs -copyFromLocal复制测试日志文件到HDFS。接着,通过hadoop jar命令启动streaming作业,指定mapper和reducer的Python脚本路径、输入输出文件夹及格式等。在集群上运行时,Hadoop自动管理数据分区、容错与负载均衡,实现任务高效可靠地完成。这种分布式处理能力使MapReduce成为处理海量数据的利器。
DB2
0
2024-10-30