为了提升对复杂波动过程的预测能力,本研究结合物理模型与统计方法,探索了“波动方程-Gauss过程”模型。通过误差分析,将波动方程理论预测与实际数据的偏差分解为三部分,并采用Gauss过程模型进行拟合:第一部分拟合为正交预测因子的线性组合,涵盖了外力与初边值条件引起的误差;第二部分拟合为Gauss过程项,考虑了模型假设不准确与数值解收敛性等因素;第三部分拟合为白噪声,代表测量误差。该模型的预测因子作为波动过程的基函数组,体现了波动的物理本质,对外界影响不敏感。基于实验数据的预测效果验证了模型的可靠性与有效性。