14.1支持向量机基础,包括机器学习的基本问题,经验风险最小化问题,VC维与学习一致性理论,以及结构化风险最小化。14.2支持向量机的基本原理涵盖线性支持向量机、广义线性支持向量机及非线性支持向量机,包括高维空间的影射和核函数。14.3支持向量机的实现技术介绍chunking算法、Decomposing算法和SMO算法,详细分析SMO算法的特点和优势。14.4支持向量回归机包括不敏感损失函数和支持向量回归机模型。14.5还讨论了支持向量机的改进算法。