这项研究的目的是比较在基于网络的环境中视觉反应时间和听觉反应时间的快慢。当参与者在灯光或声音出现时被要求立即按下按钮时,简单的反应时间可能会有所不同。研究创建了一个用于捕获这些反应时间的Web应用工具,可通过互联网访问。数据采集后使用R进行统计分析,结果显示基于网络的环境中,视觉和听觉反应时间并无显著差异。此外,性别对反应时间的影响也进行了分析,发现在视觉刺激下,男性的反应速度优于女性,而在听觉刺激下,性别间无显著差异。
基于网络环境中触觉和视听反应时间的研究
相关推荐
使用响应时间和错误推断离散序列生产任务中的块的算法
picard算法matlab代码分块的多方面支持强大的算法:实现该包实现了Daniel E. Acuna、Nicholas F. Wymbs、Chelsea A. Reynolds、Nathalie Picard、Robert S. Turner、Peter L. Strick、Scott Grafton在“分块的多方面支持稳健算法”中描述的方法。和Konrad Kording,被神经生理学杂志接受()。该算法由Daniel E. Acuna ()实现,如果您有任何问题,请给他发送电子邮件。要运行该算法,您需要首先去除数据趋势,以便删除与分块基本无关的训练方面。在我们的论文中,我们描述了一个简单的模型来消除这种趋势。我们在“demo.m”中提供了一个完整的示例,使用来自一个主题和一个序列的数据。我们的代码需要来自Matlab的Statistics Toolbox来去除趋势。
Matlab
0
2024-08-22
基于全局特征和核力场的时间序列聚类研究
聚类分析在时间序列数据挖掘中扮演着至关重要的角色,是众多领域应用的关键,例如医学图像分析、气象预测和金融市场分析等。然而,如何有效地对长时间序列进行聚类分析仍然是一个具有挑战性的课题。
本研究提出了一种基于全局特征和核力场的长时间序列聚类方法。该方法首先提取时间序列的全局特征,然后利用核力场对这些特征进行聚类。实验结果表明,该方法能够有效地对长时间序列进行聚类,并且具有较高的准确性和效率。
数据挖掘
4
2024-05-24
基于网络数据挖掘的研究
随着技术的迅速进步,网络数据量急剧膨胀,如何高效地从海量信息中提取有价值数据成为挑战。传统搜索引擎虽提供基础检索服务,但难以满足个性化需求。因此,将数据挖掘技术引入社会网络分析是当前重要研究方向。社会网络分析通过研究个体间互动模式,已扩展到分析网络链接结构及其潜在含义。在网络数据挖掘中,应用社会网络分析能有效理解信息流动模式、识别关键网页,提升信息检索质量和效率。
数据挖掘
0
2024-09-13
基于数据流和点对点网络的动态推荐算法研究
推荐算法在数据挖掘中广泛应用,但当前主要针对静态数据,缺乏对动态数据的适应性。提出基于数据流的推荐算法,通过点对点网络替代传统参数服务器,解决了分布式平台中滞后梯度和掉队者问题。算法引入了遗忘策略和异常评分检测,基于Flink框架设计实现,并在MovieLens-1m数据集上验证。实验结果显示,该算法保持推荐准确率的同时,显著降低了通讯开销。
数据挖掘
3
2024-07-17
基于复杂网络的学生社交网络模型研究(2008年)
利用实证数据分析QQ网络,研究了基于Internet的学生社交网络模型。通过比较网络度分布和特征参数,发现QQ网络与传统BA模型存在显著差异。提出了一种新的网络演化模型,并通过统计分析验证其与QQ网络参数的高度一致性,为学生社交网络研究提供了新的理论支持。
统计分析
0
2024-08-18
基于动态重心平均核的RBF网络时间序列分类
DBAK-RBF: 基于动态重心平均核的RBF网络时间序列分类
该代码库提供了一种新的时间序列分类方法:动态重心平均核径向基函数网络 (DBAK-RBF),相关论文已被 IEEE Access 收录。
核心内容
动态重心平均核 (DBAK):
基于改进的高斯动态时间规整 (AGDTW) 算法。
利用 k 均值聚类和基于 DTW 的平均算法 (DTW 重心平均,DBA) 确定核中心。
引入归一化项以增强训练过程的稳定性。
DBAK-RBF 网络:
集成 DBAK 作为核函数。
有效处理时移不变性、复杂动力学和不同时间数据长度带来的挑战。
代码结构
DBAKRBF/:
包含 DBAK-RBF 网络及其组件分析的源代码。
基于 https://github.com/habi/dynamic-time-warping 进行开发。
DBAKRBF/costFunctionRBFN.m: 计算 DBAK-RBF 网络的成本和梯度。
Matlab
2
2024-05-30
基于循环神经网络的信号降噪研究
本研究探索了循环神经网络 (RNN) 在信号降噪任务中的应用。RNN 具有强大的时序数据处理能力,能够捕捉信号中的时间依赖关系,从而有效地滤除噪声,还原信号的真实形态。
我们利用 Matlab 构建了 RNN 降噪模型,并通过实验验证了其有效性。结果表明,相较于传统的信号降噪方法,RNN 模型在降噪性能上具有显著优势,尤其是在处理复杂噪声和非线性信号方面。
本研究为信号降噪领域提供了一种新的思路,并为 RNN 在其他领域的应用提供了参考。
Matlab
2
2024-06-01
Explorer环境中的网络数据挖掘实验PPT
在Explorer环境中进行网络数据挖掘实验,是当前研究的一个重要方向。
数据挖掘
0
2024-10-17
基于Matlab开发的泊松网络中SINR过程的阶乘矩量度研究
根据信息论的论证,信号干扰加噪声比(SINR)在无线通信中是关键性能指标。这些Matlab脚本通过集成或模拟计算泊松蜂窝网络中多个基站连接的典型用户的基于SINR的k覆盖概率。该网络具有恒定的基站密度和基于公共路径损耗指数的模型。结果适用于整个SINR域,包括小于0.1的较小SINR阈值。执行测试文件可通过打开TestIntSTVsMT.m并按F5键实现。
Matlab
0
2024-08-12