当前,信息网络研究主要集中在同质网络上,而对于异质信息网络的网络表示学研究较为有限。提出一种创新方法,利用不同元路径将异质信息网络转化为带权质子图,通过引入带权重边的元路径来抽取同质子图。进一步采用带偏置的随机游走策略生成同类节点序列,并利用Skip-gram模型来学习节点的表示向量。实验结果显示,相较于单一路径算法,本算法在节点分类及相似性搜索等数据挖掘任务中表现出色。
基于带权质子图的异质信息网络表示学习算法
相关推荐
异质信息网络相似性度量的并行化算法研究与实现
近年来,异质信息网络的研究受到全球广泛关注,涉及聚类、分类、推荐等多个领域。异质信息网络由不同类型的节点和边构成,具有复杂的结构和丰富的语义信息,能够全面反映系统中的组成对象及其关系。节点相似性度量是实现聚类、推荐等任务的基础。目前,国内外提出多种解决方法,HeteSim算法是典型代表。该算法基于双向随机游走,传统的单节点计算已无法满足其快速计算需求,因此开发适用于集群环境的并行化算法成为重要课题。基于Spark分布式计算框架,研究并实现了HeteSim的并行化算法,主要改进在于基于矩阵乘法的并行化策略,以解决传统算法的内存消耗、网络开销和执行时间长的问题。
算法与数据结构
6
2024-07-17
基于关联规则映射的生物信息网络多维数据挖掘算法优化
针对生物信息网络中的数据挖掘问题,如算法精度低、运行速度慢和内存占用大,提出一种基于关联规则映射的优化算法。该算法利用网络数据集之间的关联映射关系,确定数据集的关联规则,并引入挖掘因子和相对误差以提高算法精度。同时,根据多维子空间中数据集的关联程度进行区分,有效挖掘不同数据集。实验结果显示,优化后的算法在提高挖掘精度、减少内存占用和提升计算速度方面具有显著优势。
数据挖掘
7
2024-07-15
RankClus论文的信息网络分析方法
在当前信息时代,信息网络无处不在,从中提取有用知识成为重要任务。传统的聚类和排序方法在处理单一数据类型时已成熟,但在异构信息网络中显得力不足。为解决这一问题,提出了RankClus框架,集成聚类与排序,以更准确地理解和分析多类型信息网络。框架首先基于初始聚类进行数据分割,并应用排序算法优化聚类效果。接下来,RankClus采用混合模型分解对象,优化聚类质量。随后通过迭代优化聚类和排序结果,直到达到稳定状态。实验结果显示,RankClus在信息网络分析中展现出显著优势,生成更准确的聚类结果,以更高效率完成任务。
数据挖掘
11
2024-08-09
苏州信息网源码
提供苏州信息网的开源全站程序源码,使用ASP和Access数据库开发。
Access
9
2024-05-01
分类信息网源码
分类信息网源代码
用于构建分类信息网站的代码
Access
12
2024-05-25
GraRep算法的Python实现学习图形表示的全局结构信息(WWW 2015)
GraRep算法的Python实现是基于SciPy的,专注于学习加权图中顶点的低维向量表示。与传统方法不同的是,该算法整合了图的全局结构信息,通过技术进步来有效表达出现在图中的顶点。我们还详细分析了与DeepWalk和跳图模型等现有工作的关系,并展示了在语言网络、社交网络和引文网络上的实验结果,表明我们的方法在聚类、分类和可视化等任务中具有显著优势。此外,该算法的Python实现现已在存储库中提供。
Matlab
11
2024-08-14
动态大脑网络异常连接检测基于多元图学习的MATLAB开发
Aggarwal, P., & Gupta, A. (2019) 提出了一种用于检测自闭症患者动态大脑网络异常连通性的多元图学习方法。该方法在医学图像分析领域展示了显著的潜力,详细阐述了其MATLAB实现。
Matlab
8
2024-08-10
asp+access中介信息网站
登录密码请参考上传文件《上传的各个网站的使用及密码》
Access
9
2024-05-20
城市分类信息网站系统
支持按类别查询和搜索分类信息
具备灵活的会员积分系统
提供实名认证和会员类型管理功能
采用可视化模板引擎,支持 HTML 静态页面生成
具备访问统计、邮件群发、投票调查和友情链接等功能
可自由创建栏目频道和设置相关资讯
统计分析
10
2024-05-20