统计学入门
抽样与数据
描述性统计
概率主题
离散随机变量
连续随机变量
正态分布
中心极限定理
置信区间
单样本假设检验
算法与数据结构
7
2024-04-30
使用SPSS进行基本统计分析-SAS大学统计学教程
3.3 使用SPSS进行基本统计分析
一. 数据排序
选择菜单Data→Sort Cases
将主排序变量从左侧列表框选到Sort by框中,并在Sort by框中选择升序(Ascending)或降序(Descending)。
示例:某班级男生的身高数据(单位:厘米)171, 182, 175, 177, 178, 181, 185, 168, 170, 175, 177, 180, 176, 172, 165, 160, 178, 186, 190, 176, 163, 183
统计分析
2
2024-07-12
统计学课程项目
杜克大学统计学课程项目包括:
手写数字识别:基于 SVM 的机器学习项目
La Quinta 和 Denny's:从网站抓取信息
人口统计分析
停车大战:处理 1.7GB 的曼哈顿数据,包含 910 万个观测值的 43 个变量。进行地理编码并使用 SVM 重建纽约市的警区。
统计分析
1
2024-05-20
基础统计学笔记
基础统计学笔记详细记录了数据的收集、分析和解释过程。通过对数据的整理和分析,帮助我们理解数据背后的规律和特征,从而做出准确的决策。笔记涵盖了数据类型、抽样方法、概率论、统计量和参数估计等关键知识点,总共78页,为学习统计学的学生提供了一份完整的学习资料。
统计分析
4
2024-07-15
医学统计学中的SAS程序学习
该文章由东南大学及其医学院撰写,重点介绍了在医学统计学领域中使用SAS程序的学习和应用。
统计分析
2
2024-07-17
多元统计学应用 R
《多元统计学应用 R》教材提供目录索引,方便查阅特定内容。
算法与数据结构
1
2024-05-01
MATLAB版统计学概论
这是一份优秀的数学建模和概率论资料,希望能对大家有所帮助!
Matlab
2
2024-07-27
数据挖掘的统计学基础
数据挖掘的统计学基础
这本课件深入浅出地从统计学的视角探讨了数据挖掘的核心概念和方法。它将复杂的统计学理论与实际的数据挖掘应用相结合,为读者理解数据挖掘的本质提供了清晰的框架。
主要内容包括:
探索性数据分析
统计推断与假设检验
预测模型构建
模型评估与选择
适用人群:
对数据挖掘感兴趣,并希望了解其背后的统计学原理的学生、研究人员和从业者。
数据挖掘
2
2024-05-20
大数据统计学基础
面向非数学专业人士的大数据统计学基础课程
这门课程专为希望进军大数据分析领域的非数学专业人士(如IT人员、业务人员等)设计,帮助他们夯实数学基础,为学习更高级的数据分析、数据挖掘、机器学习课程做好准备。
课程收益:
通过本课程的学习,学员的数学基础将得到显著提升,学习其他大数据分析课程时将更加轻松自如。
课程大纲:
第一课 统计学入门:描述性统计
均值、中位数、众数
方差、标准差
常见统计图表
第二课 概率论基础:赌博设计
概率的基本概念
古典概型
第三课 条件概率与贝叶斯公式
贝叶斯公式
事件的独立性
第四课 随机变量及其分布
微积分基础
二项分布、均匀分布、正态分布
第五课 多维随机变量及其分布
第六课 随机变量的数字特征
期望
方差与协方差
第七课 统计学的哲学基础
大数定律
中心极限定理
抽样分布
第八课 参数估计之点估计
第九课 参数估计之区间估计
第十课 基于正态总体的假设检验
第十一课 非参数检验:秩和检验
第十二课 预测未来的技术:回归分析
第十三课 方差分析
第十四课 时间序列分析简介
第十五课 随机过程与马尔科夫链简介
数据挖掘
4
2024-05-25