提出了一种基于动态规划的中文专有名词自动切分方法。该方法首先对大量通用形式的专有名词进行统计分析,根据用字出现的位置和频率计算估价值。然后,将中文专有名词切分问题转化为决策树求解最优解问题,并利用动态规划算法选取估价值最优的切分路径。实验结果表明,该方法切分速度快,准确率高,在中文姓名切分任务中表现优异。
基于动态规划的中文专有名词切分方法
相关推荐
基于全切分技术的歧义识别与处理研究
ID3算法作为数据挖掘分类技术的核心算法,具备简单构造、强大学习能力和快速分类等优势。然而,由于其采用的机器学习算法,面对小规模数据集和数据库集成性不足的问题,导致其实用性受到影响。为改进这一情况,本研究在保留原算法思路的基础上,引入了嵌入式SQL技术,直接对目标数据库进行查询和处理操作,最终生成了高效的分类决策表并存储于数据库中。实验证明,改进后的ID3算法结合了SQL的高效性和C语言的灵活性,在大数据分类方面表现出色,显著提升了算法执行效率。
数据挖掘
0
2024-08-08
搜索与动态规划的本质比较
从上面的分析可以看出,动态规划可以被视为搜索的一种记忆化优化。动态规划通过保存搜索时重复计算的状态,以空间换取时间。记忆化搜索通常是自顶向下求解,而我们通常编写的动态规划则是自底向上的方法。因此,动态规划本质上是记忆化搜索的一种非递归形式。
算法与数据结构
0
2024-08-17
从搜索到动态规划的应用探索
搜索技术的进步,从有序的状态空间节点中寻找问题解决方案,涵盖了深度优先搜索和广度优先搜索策略,优化搜索成为高级枚举的重要手段。
算法与数据结构
1
2024-07-29
动态规划算法实现
使用 Python 实现动态规划算法
解决优化问题
算法与数据结构
3
2024-05-13
基于动态轨迹模式挖掘的位置预测方法研究
针对海量用户轨迹数据,该研究提出了一种名为PRED的动态轨迹模式分析和位置预测方法。PRED方法首先利用改进的模式挖掘模型从轨迹数据中提取频繁模式(T-模式)。随后,该方法使用DPTUpdate算法构建名为DPT(dynamic pattern tree)的快捷数据结构,该结构蕴涵时空信息,用于存储和查询移动对象的T-模式。最后,PRED方法通过Prediction算法计算最佳匹配度,预测移动对象的轨迹位置。基于真实数据集的对比实验结果表明,PRED方法能够提供动态分析能力,其平均准确率达到72%,平均覆盖率达到92.1%,相较于现有方法,预测效果显著提升。
数据挖掘
4
2024-05-26
状态压缩动态规划解决放置问题
在放置操作中,每一行有 w 个位置,因此每行状态可表示为 0 到 2^w - 1 的整数。
当前行的状态 s 由前一行状态 s' 转换而来。对于该行位置 j,状态转换规则如下:
若前一行位置 j 为 0,则该位置可以竖放,状态转换:0 -> 1
若前一行连续两个位置为 0,则这两个位置可以横放,状态转换:00 -> 00
若前一行位置 j 为 1,则该位置不可再放,状态转换:1 -> 0
算法与数据结构
3
2024-05-19
动态规划初探及其应用案例.pdf
动态规划初探及其应用案例.pdf
算法与数据结构
0
2024-08-28
Matlab数学建模教程动态规划详解
动态规划简介
动态规划是一种优化技术,通常用于解决最优化问题,例如寻找最小成本或最大效益的决策序列。通过将复杂问题分解成一系列子问题,并应用最优子结构来达到全局最优解。MATLAB在此过程中的强大数值计算能力,极大简化了动态规划的实现。
动态规划在MATLAB中的应用场景
动态规划广泛应用于资源分配、路径规划、库存控制等数学建模场景。MATLAB可以通过定义状态、决策、状态转移方程(价值函数)和边界条件等步骤,来实现动态规划的高效计算。例如,经典的背包问题可以用MATLAB编程求解:定义一个二维数组(价值矩阵),填充每个元素以表示放入物品的最优价值。
动态规划的实现步骤
定义状态:用数组或矩阵表示状态空间。
决策定义:明确在每个状态的可行操作。
状态转移方程:即价值函数,用于计算状态转移的结果。
边界条件:设置初始或最终状态的条件。
MATLAB实现示例:背包问题
在背包问题中,物品具有不同的重量和价值。目标是在不超过背包容量的前提下,最大化总价值。MATLAB的for和while循环适合动态规划迭代求解,逐步填充价值函数。可选择逆向计算来减少不必要的步骤。
动态规划结合其他算法的应用
动态规划还可与贪心策略和分治法等算法结合使用。例如,旅行商问题中结合贪心策略,通过局部最优解的回溯调整,找到全局最优路径。
MATLAB工具与可视化分析
MATLAB的脚本和函数功能大大简化了调试与优化。通过状态图或价值函数变化曲线等可视化手段,可以帮助理解算法过程与结果的合理性。此外,在求解带约束的最优化问题时,可用fmincon结合动态规划,广泛应用于工程、经济和生物科学领域。
总结
本章详细讲解了如何在MATLAB中实现动态规划,从基本概念、算法设计、代码编写到实际案例分析,帮助读者掌握动态规划在MATLAB环境中的实践技巧,提升解决复杂数学建模问题的能力。
算法与数据结构
0
2024-10-28
01背包问题的动态规划算法详解
01背包问题是一个经典的组合优化问题,涉及算法和动态规划。其核心是在不超过背包容量限制的情况下,选择物品以最大化总价值。动态规划通过构建二维数组来解决该问题,避免重复计算,并确定每个物品的选择以及对应的最大价值。具体算法实现如下:初始化一个二维数组dp,其中dp[i][j]表示在前i个物品中,总重量不超过j时的最大价值。使用状态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-wt[i-1]] + val[i-1])来填充dp数组。最终的最大价值存储在dp[n][W]中,其中n是物品数量,W是背包容量。动态规划解决方案确保了在给定条件下找到最优解。
算法与数据结构
2
2024-07-16