- GFS:可扩展分布式文件系统,提供高性能和容错性
- BigTable:可扩展的分布式数据库,用于存储海量数据
- MapReduce:分布式计算框架,可并行处理海量数据集
- 这些技术被广泛应用于 Google 的服务和研发工作中,成功满足了存储和计算需求
Google 云端计算经典论文:GFS、BigTable、MapReduce
相关推荐
Google大数据经典论文中文译版
收录了Google File System、Bigtable、MapReduce三篇经典论文的中文译版,供大数据从业者学习研究之用。
Hadoop
4
2024-05-16
谷歌DFS+Mapreduce+Bigtable三篇论文中英文版本
谷歌DFS+Mapreduce+Bigtable三篇论文的中英文版本已经整理完毕。
Hadoop
2
2024-07-17
Google三篇经典论文中英文合集
Google三大论文中英文合集:GFS、MapReduce和BigTable,推动了大数据、云计算、人工智能等领域发展。
算法与数据结构
3
2024-05-01
Google Bigtable的分布式数据存储系统
Google Bigtable是一种专为处理大规模数据而设计的分布式存储系统,其数据模型包括稀疏的多维排序Map,通过行关键字、列关键字和时间戳来标识和存储数据。Bigtable的设计简单灵活,支持PB级别的数据存储,并在成千上万台服务器上水平扩展。
Hadoop
0
2024-09-13
GFS论文中英文版
谷歌大数据论文之GFS中英文版本,深入了解Google分布式存储系统的核心思想与实践。
Hadoop
4
2024-05-01
Node.js 版 Google Cloud Bigtable 客户端库
客户端库安装说明
从本地工作站访问 API 的操作指南
Cloud API 客户端库介绍
NoSQL
6
2024-04-29
Google大数据三篇经典论文综述与中文版介绍
Google作为IT行业的技术领导者,在大数据处理领域尤为突出。其经典论文包括GFS(Google文件系统)、MapReduce和BigTable,对现代分布式计算系统设计与实现产生深远影响。这些论文详细阐述了大规模数据存储、分布式计算模型以及结构化数据存储的关键技术,对Hadoop等开源项目的发展起到关键作用。GFS解决了海量数据存储问题,MapReduce实现了大规模数据集的并行计算,BigTable则为分布式NoSQL数据库提供了高效读写性能和动态扩展能力。这些技术不仅推动了云计算与大数据处理的发展,也深刻影响了当今分布式系统的开发与应用。
Hadoop
2
2024-07-15
MapReduce计算模型详解
MapReduce是Google提出的一种分布式计算模型,被广泛应用于大数据处理领域,特别是在Hadoop平台上。该模型将大规模数据处理任务分解为两个主要阶段:Map(映射)和Reduce(化简),从而实现并行处理,提升计算效率。Map阶段负责将输入数据集分割成小数据块,并由Map任务进行处理,通常用于数据预处理如解析、过滤和转换。Map任务输出键值对通过分区器按键划分,传递给Reduce阶段。Reduce阶段对Map输出的键值对进行聚合操作,如求和、计数或连接,生成最终结果。在Map和Reduce之间,通过Shuffle和Sort确保数据按键排序和聚集,以便Reduce正确处理。Hadoop的MapReduce框架包括JobTracker(现在为YARN)调度和监控任务,NodeManager执行Map和Reduce任务,DataNode存储数据,并支持容错机制。优化技巧包括使用Combiner函数减少数据传输量,合理设置Reducer数量平衡负载和内存使用。
Hadoop
3
2024-07-16
Google大数据研究论文PDF资源下载
这里提供了Google关于大数据的三篇著名研究论文的原版PDF下载链接。
Hadoop
0
2024-09-20