SA2DBSCAN 算法优化了经典的 DBSCAN 密度聚类算法。DBSCAN 算法能够自动识别簇数量,并有效处理任意形状的簇,但需要预先设置 Eps 和 minPts 参数。SA2DBSCAN 算法通过分析数据集的统计特性,实现了 Eps 和 minPts 参数的自适应确定,提升了算法的自动化程度和实用性。
SA2DBSCAN:自适应密度聚类
相关推荐
DBSCAN Matlab实现密度聚类算法
DBSCAN 的密度聚类思路,蛮适合那种形状不规则、还有点噪声的数据。你不用预先设定聚类个数,只要定个ε和MinPts就能搞定,挺适合初学者上手的。Matlab 版本的实现比较清晰,变量名啥的都能看懂,逻辑也不绕。基本结构就是循环+判断,搞懂核心对象和边界点这两个概念就能顺着走下去了。资源包叫密度聚类 20160407,里头还有 PPT,讲原理也讲应用场景,像是地理数据、图像、社交图谱这些都有提到,算是比较全面了。还有一点挺好的,运行效果直接可视化,能看到聚类是怎么分的,这对理解DBSCAN有。代码里你只需要设定一下ε和MinPts,其余的交给算法来搞定,效率还不错。如果你平时用 Matlab
算法与数据结构
0
2025-06-30
密度聚类方法DBSCAN、OPTICS、DENCLUE
基于密度的聚类方法的思路挺巧妙,不靠你事先指定簇的个数,而是看哪里数据密集就往哪儿凑。像DBSCAN、OPTICS、DENCLUE这些算法,都能搞定各种不规则的簇形,噪声点也还不错。
DBSCAN的逻辑蛮:找邻居、看密度,够密就拉进来一起玩,太稀就当噪声。适合用来图片区域、地理坐标、甚至是社交网络的社群划分。
OPTICS就比 DBSCAN 细腻点,在数据密度变化大的时候挺实用,排序之后你再来观察哪里是簇,挺有意思的。
DENCLUE是基于数学密度函数来的,思路有点偏学术,但优势是对复杂数据形态的捕捉更强,适合你那种非均匀分布的数据。
资源方面我翻了下,有不少现成的实现,Matlab、Pyth
算法与数据结构
0
2025-07-02
CluFNC数据自适应聚类算法
CluFNC 算法通过结合网格划分、场强计算、自组织映射(SOM)和 Chameleon 算法,在数据中发现自然的聚类特征。它不依赖传统的全局参数,而是能根据数据本身的结构来调整聚类策略,避免了许多传统算法的局限性。是在大规模数据集时,CluFNC 的高效性和灵活性真的有优势,能够更准确地发现数据中的自然分布。
这种方法就像是给数据加了一副“眼镜”,能够让你看到它们的真正结构。你可以通过调整网格大小、噪声阈值等参数,适应不同的数据情况。而且,过程中,它也能自动适应噪声和异常数据,聚类效果还蛮稳定的。
如果你正在一些复杂的数据集,CluFNC 算法的确是一个值得尝试的工具。它不仅可以更好地揭示数
数据挖掘
0
2025-07-01
自适应谱聚类算法改进
通过提出一种自适应谱聚类算法改进方案,在传统谱聚类算法的基础上,通过自适应调整核函数参数和聚类簇数,提升了算法对任意形状样本空间的聚类性能,实验验证了改进算法的有效性。
数据挖掘
12
2024-05-25
进化吸引子传播AP聚类算法自适应优化聚类
进化算法和 AP 聚类的组合,听起来是不是有点黑科技那味儿?这个叫进化吸引子传播 AP 聚类算法的东西,确实挺有意思的。它不是简单叠加两种技术,而是把遗传算法、粒子群优化这类优化手段和Affinity Propagation聚类算法揉在了一起,能有效避免 AP 卡在局部最优的问题,聚得更准,分得更稳。
初始化用的是一组随机种群,每个个体都是个潜在的聚类中心。计算相似度矩阵,再做责任和可用性消息传递,说白了就是“我适不适合当中心”和“我觉得你适不适合当中心”的互相喊话过程。挺像民主投票,但背后逻辑更复杂。
更新适应度后就是进化操作了,经典套路:选择、交叉、变异全上,挺适合你做一些自适应聚类实验。
统计分析
0
2025-06-16
仿射传播聚类算法及自适应优化
仿射传播聚类算法 (Affinity Propagation Clustering, AP) 是一种高效的聚类算法,特别适用于处理大规模数据集和众多类别的情况。
算法原理:
AP算法通过数据点之间传递信息来识别数据中的聚类中心 (exemplars)。每个数据点都向其他数据点发送信息,表明其适合作为聚类中心的程度,并接收来自其他数据点的类似信息。通过迭代传递信息,算法最终确定一组代表性的聚类中心,并将其他数据点分配到相应的聚类中。
挑战与改进:
传统的AP算法在实际应用中面临两个挑战:
偏向参数难以确定: 算法的性能受偏向参数的影响,而最佳参数值难以确定。
震荡问题: 算法可能陷入震荡状态,
算法与数据结构
15
2024-05-20
自适应步长萤火虫划分聚类算法研究
聚类分析在数据挖掘、模式识别和图像分析等领域具有重要作用。传统的 K-means 算法容易受初始聚类中心选择的影响,陷入局部最优解。为此,提出一种基于自适应步长的萤火虫划分聚类算法 (ASFA)。该算法利用萤火虫算法的随机性和全局搜索能力,确定指定数量的初始簇中心,然后利用 K-means 算法进行精确的簇划分。为避免算法陷入局部最优并提高求解精度,ASFA 采用自适应步长策略替代传统的固定步长。 通过在不同规模的标准数据集上进行实验,将 ASFA 与 K-means、GAK、PSOK 等算法进行比较,结果表明 ASFA 具有更优的聚类性能、稳定性和鲁棒性,并在寻优精度方面表现出显著优势。
数据挖掘
16
2024-05-20
自适应混沌粒子群算法优化XML数据聚类策略
为了解决海量 XML 文档数据挖掘中聚类划分效率低的问题,该研究探索了一种优化 XML 数据聚类方法。通过阐述 XML 键及其聚类定义,并结合混沌运动的特性,提出了一种自适应混沌粒子群算法。该算法能够有效地克服传统聚类方法容易陷入局部最优解的缺陷,并显著提高了 XML 数据聚类的效率和准确性。
数据挖掘
16
2024-05-12
DBSCAN聚类算法Java实现
利用DBSCAN聚类算法实现的核心思想是:遍历所有未访问点,若为核心点则建立新簇,并遍历其邻域所有点(点集A),扩展簇。若簇内点为核心点,则将其邻域所有点加入点集A,并从点集移除已访问点。持续此过程,直至所有点被访问。
算法与数据结构
24
2024-04-30