本研究利用某医院肿瘤外科患者的医疗病案数据,探讨两种不同数据挖掘方法在揭示临床用药关联性上的应用。研究重点关注关联规则挖掘技术和XX方法,比较两种方法在识别药物组合模式、潜在相互作用和用药规律方面的差异,以期为临床医生提供更精准、安全的用药指导。
肿瘤外科患者临床用药关联性挖掘研究:基于关联规则和XX方法的对比分析
相关推荐
基站告警关联性研究基于关联分析方法的研究
基站告警的数据挖掘真是个挺有意思的方向,是做前端做久了,也会碰到一些后台大数据联调场景。这篇论文讲的是用关联方法搞定基站停电的告警规律,内容不枯燥,思路也挺实用的。像是怎么用滑动时间窗口把时间序列数据变成事务序列,怎么设计告警过滤机制去掉冗余字段,这些都讲得蛮清楚的。告警预那块还不错,有点像做数据接口前要先清洗一遍,才能喂给前端图表。不然乱七八糟的数据谁也展示不好对吧?而且作者还用了SPSS Clementine这类工具来做规则挖掘,不过你也可以用 Python 跑类似的流程,核心逻辑是一样的。规则太多怎么办?论文也提到了用剪枝和压缩来精炼结果,有点像写组件时去掉不必要的逻辑,只保留核心能力。
数据挖掘
0
2025-07-02
关联规则挖掘数据挖掘中的关联规则分析
关联规则挖掘在数据挖掘中有着广泛的应用,最典型的例子就是购物篮。比如,你想知道顾客常常购买哪些商品组合?通过关联规则挖掘,你能出哪些商品常常一起被买,哪些商品的购买时间序列比较稳定。像超市货架设计、库存管理等,都能从这些中受益。通过这些技术,你可以更好地满足顾客需求,提高销售效率。如果你刚开始接触数据挖掘,学习购物篮问题是一个不错的起点。这里有些链接可以进一步你了解相关的技术和案例哦。
数据挖掘
0
2025-06-24
关联规则和动态关联规则简介
本内容适合于数据挖掘方向的硕士研究生阅读学习,对关联规则与动态关联规则做了简介。
数据挖掘
12
2024-04-30
关联规则挖掘的新算法研究
关联规则挖掘一直是数据挖掘中重要的内容之一。提出了DPCFP-growth算法,它是基于MSApirori算法,并采用了CFP-growth分而治之的策略,以弥补原算法的不足。与CFP-growth算法相比,DPCFP-growth算法有效地将大数据库分解为多个小的子数据库,从而提高了算法的运行效率。实验结果表明,DPCFP-growth算法在大型数据挖掘中具有优越性。
数据挖掘
17
2024-07-17
挖掘多层关联规则
挖掘多层关联规则可找出层次化的关联规则,例如:
牛奶 → 面包 [20%, 60%]
酸奶 → 黄面包 [6%, 50%]
数据挖掘
24
2024-05-25
关联规则挖掘基于T统计量方法
提出一种基于T统计量的关联规则挖掘方法,使用显著度取代置信度,挖掘出的规则具有统计显著性。
数据挖掘
20
2024-05-13
概念格关联规则挖掘方法
基于概念格的关联规则挖掘方法,结构清晰、扫描少、效率高,适合动态数据和分布式场景。你要是厌倦了传统的 Apriori 挖掘逻辑,真可以试试这个。构建一次概念格,不仅规则出来得快,后续还挺好维护。关键是,只扫一遍数据库,响应也快,大数据也不吃力,嗯,挺香的!
概念格的数据组织能力还蛮强,不像频繁项集那样靠不断扫描。它是一个偏序结构,像个有层级的树,你的数据逻辑关系全都能“格”出来。尤其是在做市场或者用户行为的时候,效果,规避了多冗余操作。
以前用 Apriori 算法,每次数据库一更新就头大——频繁项集重扫、规则重挖,累不累?现在用概念格挖掘,变动时只需局部维护格结构,不仅稳定,还更可控。而且闭
DB2
0
2025-06-23
关联规则分析简介
关联分析挖掘大数据中相关联系,发现规律和模式,应用于商业决策。如购物篮分析、跨品类推荐、货架布局优化、联合促销等,提升销量、改善用户体验。
数据挖掘
15
2024-05-27
Apriori关联规则挖掘应用研究
Apriori 算法的频繁项集挖掘思路挺经典的,尤其是在做商品推荐或者用户行为时,真的蛮有用。像“面包”和“牛奶”常被一起买这种事儿,它能挖出来,精准还高效。挖掘过程就是反复扫描数据库,生成频繁项集,再搞出关联规则。嗯,支持度、可信度这两个参数你得搞清楚,不然调出来的规则不一定靠谱。算法逻辑其实不复杂,主要靠“非频繁的子集不频繁”这点剪枝,大大减少了无用计算。你要是做电商、金融、或者用户行为挖掘,这套方法还挺值得一试的。
数据挖掘
0
2025-07-01