关联规则挖掘是数据挖掘领域的核心任务之一。近年来,随着数据规模不断扩大,分布式数据库架构以及数据动态变化的特性对关联规则挖掘算法提出了更高的要求。本研究聚焦于 CanTree 数据结构,提出一种高效的分布式关联规则挖掘算法,并设计相应的增量更新机制以适应动态变化的数据环境。
基于 CanTree 的分布式关联规则挖掘与增量更新算法研究
相关推荐
分布式环境下Paillier同态加密的关联规则挖掘
在隐私保护数据挖掘领域,如何在保障数据安全性的前提下,不损失挖掘精度一直是一项挑战。为解决这一问题,我们提出了一种基于Paillier同态加密的关联规则挖掘方法,该方法适用于分布式环境。
方法特点:
计算与解密分离: 采用计算方和解密方分离的策略,有效保障数据挖掘过程的安全性。
精度无损: 利用同态加密特性,在不解密数据的情况下进行计算,确保挖掘精度不受影响。
效率提升: 引入蒙哥马利算法优化Paillier算法,降低计算开销,保证算法效率。
实验结果表明,该方法在引入加解密过程后,整体开销依然处于可接受范围,验证了其在实际应用中的可行性。
数据挖掘
11
2024-05-24
研究报告-面向互联网平台用户隐私保护的分布式关联规则挖掘算法.pdf
互联网平台提供的用户信息授权服务已广泛应用,但在满足第三方网站的数据挖掘需求时,常将用户隐私信息存储在多方,增加了用户隐私滥用和泄露的风险。针对此问题,本研究提出了一种开放平台与网站间的分布式关联规则挖掘算法。该算法无需依赖可信的第三方参与,开放平台和网站各自根据挖掘条件生成布尔型矩阵,以频繁-1项集编号和用户身份标志符为行列标记。开放平台对矩阵进行扰动和整合,网站在整合后的矩阵上挖掘全局关联规则。实验证明,该算法有效且未因通信代价显著降低挖掘效率。
数据挖掘
8
2024-10-12
关联规则挖掘的新算法研究
关联规则挖掘一直是数据挖掘中重要的内容之一。提出了DPCFP-growth算法,它是基于MSApirori算法,并采用了CFP-growth分而治之的策略,以弥补原算法的不足。与CFP-growth算法相比,DPCFP-growth算法有效地将大数据库分解为多个小的子数据库,从而提高了算法的运行效率。实验结果表明,DPCFP-growth算法在大型数据挖掘中具有优越性。
数据挖掘
11
2024-07-17
优化分布式算法的研究
研究表明,在分布式环境中优化算法的应用具有重要意义,能够有效提升系统性能和效率。分布式算法已经成为当今科研领域中不可或缺的一部分,其在解决大规模问题和资源管理方面展现出了巨大潜力。
算法与数据结构
8
2024-07-13
基于关联规则的数据挖掘算法
基于关联规则的数据挖掘算法在毕业设计中具有重要的参考价值,内容清晰且全面。
数据挖掘
11
2024-05-13
数据挖掘中关联规则算法的研究
近年来,随着计算机技术的迅猛发展,信息技术得到了广泛的应用,数据挖掘技术作为一个新兴领域,其算法之一——关联规则算法,尤为活跃。关联规则算法能够有效处理大量数据和信息,通过从数据库中提取繁琐的项集,并建立这些项集之间的关联关系,从而挖掘出有价值的数据信息,满足不同领域的需求。深入研究了数据挖掘中关联规则算法的应用与发展。
数据挖掘
9
2024-09-14
基于部分支持度树的关联规则增量更新新算法(2011年)
关联规则挖掘是数据挖掘技术的一种简便实用方法,广泛应用于各个领域。提出了一种基于部分支持度树的关联规则增量更新算法,专为数据库新增数据时最小支持度不变的情况设计。该算法充分利用已挖掘的关联规则和保留的部分支持度树,显著提升了性能。新算法仅需一次数据库部分扫描即可完成更新,进一步提高了效率。实验结果验证了该算法在关联规则更新问题上的有效性和挖掘效率的提升。
数据挖掘
6
2024-07-23
研究论文基于MapReduce的并行关联规则挖掘算法综述
随着数据量的激增,传统算法已无法满足大数据挖掘需求,需要采用分布式并行的关联规则挖掘算法。MapReduce作为一种流行的分布式计算模型,因其简单易用、可扩展性强、自动负载平衡和容错性等优势,得到了广泛应用。对现有基于MapReduce的并行关联规则挖掘算法进行分类和综述,分析其优缺点及适用范围,并展望未来研究方向。
数据挖掘
11
2024-07-16
研究论文基于关系矩阵的关联规则挖掘算法优化
关联规则挖掘作为数据挖掘领域的重要研究方向,针对经典Apriori算法在频繁扫描事务数据库时效率低下的问题,在现有研究基础上提出了一种改进的基于关系矩阵的关联规则挖掘算法。理论分析和实验结果表明,该算法在效率和实用性上均有显著提升。
数据挖掘
12
2024-07-18