虽然原版书籍对于刚接触机器学习的人来说可能有些挑战,但配套的Weka平台提供了一个实践学习的便捷途径。
机器学习实战:工具与技术
相关推荐
机器学习算法实战
算法实战:探索机器学习核心
本篇带您深入浅出地了解机器学习常见算法,涵盖监督学习、无监督学习和强化学习三大类别,并结合实际案例,助您快速上手算法应用。
### 监督学习
线性回归: 预测连续目标变量,例如房价预测。
逻辑回归: 解决二分类问题,例如判断邮件是否为垃圾邮件。
决策树: 构建树形结构进行分类或回归预测,例如客户流失预警。
### 无监督学习
聚类分析: 将数据分组到不同的簇中,例如客户细分。
主成分分析: 降低数据维度,提取主要特征,例如图像压缩。
### 强化学习
Q-learning: 通过试错学习最优策略,例如游戏 AI。
SARSA: 基于当前策略学习,适用于实时决策场景,例如机器人控制。
掌握这些算法将为您打开机器学习的大门,开启智能数据分析之旅。
算法与数据结构
3
2024-05-25
数据挖掘:实用机器学习工具与技术(第2版)
《数据挖掘:实用机器学习工具与技术》第二版,由Morgan Kaufmann出版社于2005年出版,是一本探讨机器学习和数据挖掘应用的经典书籍。
数据挖掘
3
2024-05-23
数据挖掘:实用机器学习工具与技术(第 2 版)
摩根考夫曼出版的数据挖掘权威指南,提供机器学习工具和技术,帮助挖掘大量数据中的见解。
数据挖掘
3
2024-05-25
数据挖掘实用机器学习工具与技术 第3版
这本书是一本优秀的数据挖掘指南,详尽介绍了数据挖掘的各种工具和技术,非常适合深入学习。老师们强烈推荐阅读。
数据挖掘
3
2024-07-17
数据挖掘:实用机器学习工具和技术
数据挖掘中常用的工具和技术
数据挖掘
3
2024-05-25
机器学习的应用与技术进展
机器学习这门学科关注计算机程序如何通过积累经验自动提高性能。近年来,机器学习已广泛应用于多个领域,例如数据挖掘程序用于检测信用卡交易欺诈,信息过滤系统用于获取用户阅读兴趣,以及自动驾驶汽车在高速公路上的应用。该学科的理论和算法也取得了重大进展。
数据挖掘
2
2024-07-26
机器学习半监督学习实战指南
机器学习领域的研究者和从业者,这份半监督学习教程将为你揭开这一技术的奥秘,带你领略如何利用有限的标记数据和大量的未标记数据提升模型性能。
数据挖掘
3
2024-05-27
深入机器学习与Scikit-2版实战探索
1.13版的其他检查项需手动关闭防火墙。[root@hybrisdb1 ~]# service iptables save iptables:保存防火墙规则至/etc/sysconfig/iptables:[ OK ] [root@hybrisdb1 ~]# service iptables stop iptables:清除防火墙规则:[ OK ] iptables:将链设置为接受策略:filter [ OK ] iptables:卸载模块:[ OK ] [root@hybrisdb1 ~]# chkconfig iptables off。修改SELINUX(可以选择permissive或disabled)[root@hybrisdb1 ~]# vi /etc/sysconfig/selinux
Oracle
1
2024-07-28
机器学习实战:Python优化Rosenbrock函数
利用梯度下降和牛顿法求解Rosenbrock函数最小值
本实例探讨如何使用Python和机器学习库,通过梯度下降和牛顿法两种优化算法寻找Rosenbrock函数的最小值。
机器学习概述
机器学习致力于研究能够从经验中学习并改进性能的算法。其核心要素包括:
算法: 用于学习和预测的核心程序。
经验: 指的是用于训练算法的数据,也称为训练集。
性能: 指算法根据经验进行预测的能力,通常通过评估指标来衡量。
机器学习的典型流程为:使用数据训练模型,评估模型性能,若性能不达标则调整算法或数据,直至模型达到预期效果。
监督学习
监督学习是机器学习的一大分支,其目标是从已标注的训练数据中学习一个函数,用于预测新的输入数据。训练数据包含输入特征和对应的输出目标,通过学习特征与目标之间的关系,模型能够对新的输入进行预测。
例如,垃圾邮件过滤器就是一个监督学习的例子,其训练数据包含邮件文本(特征)和对应的标签(垃圾邮件或正常邮件)。模型学习如何根据邮件文本判断邮件类型,从而对新的邮件进行分类。
本实例将聚焦于监督学习中的优化算法,即梯度下降和牛顿法,用于寻找Rosenbrock函数的最小值。
spark
4
2024-04-30