智能EXCEL工作簿合并系统
此系统能自动将结构相同的EXCEL工作簿(基表)合并到目标工作簿(汇总表),实现报表的接收和汇总。可以同时合并工作簿内所有工作表,也可选择性地合并一个或多个工作表,而保留其他工作表不合并(例如表格封面和表格填表说明)。适用于固定行数和不固定行数但列数固定的表格,极大提高多工作簿和多工作表汇总的效率,解放手工汇总之苦。
Access
2
2024-07-16
数据挖掘最终项目 2021 春季
图像导入和缩放:导入数据集,调整图像大小,归一化像素值。
模型构建:部署 EfficientNetB7 模型,记录模型信息。
相似度向量数据集:创建特征向量数据集,通过神经网络处理每个图像。
相似性度量:计算 Jaccard 和余弦相似度,搜索最佳匹配。
可选项:微调模型,裁剪图像。
数据挖掘
5
2024-05-20
2018年至2021年的工作日与非工作日数据统计
这份报告详细记录了2018年至2021年间工作日与非工作日的数据变化情况。
MySQL
0
2024-08-10
数据挖掘 2021年度课程作业分析
2021年数据挖掘课程的家庭作业涉及对葡萄酒评价数据集进行探索性分析。数据集包括winemag-data_first150k.csv文件,其中包含关于葡萄酒评价的详细信息。学生需完成数据预处理、探索性数据分析等任务。
数据挖掘
2
2024-07-20
2021年数据挖掘趋势与技术应用
数据挖掘是从海量数据中提取有价值知识的过程,利用各种算法和统计方法揭示数据中的模式、关联和规律。在“Datamining_2021”项目中,我们聚焦于2021年数据挖掘的最新趋势和技术应用。Python作为强大易用的编程语言,因其丰富的数据处理库而在数据挖掘领域广泛应用。主要工具包括Pandas、NumPy、SciPy、Matplotlib和Scikit-learn等。Pandas提供高效的DataFrame数据结构,便于数据清洗、整合和分析;NumPy和SciPy支持数值和科学计算;Matplotlib用于数据可视化;Scikit-learn则提供机器学习各类算法。数据挖掘流程包括数据获取(使用Python的requests库和BeautifulSoup进行网页抓取)、数据预处理(Pandas清洗、转换和集成数据)、数据探索(Matplotlib和Seaborn进行统计分析和可视化)、特征工程(包括特征缩放、编码、PCA等)、模型构建(选择决策树、随机森林等算法进行分类、回归、聚类)、训练与评估(使用训练集和交叉验证评估模型性能)、模型部署(将训练好的模型应用于实际问题)。通过“Datamining_2021-master”项目,深入学习2021年数据挖掘领域的最新实践和技巧,提升数据挖掘能力,结合实际业务场景应用。
数据挖掘
0
2024-09-20
发现数据团队文件解析
RFP提案:FindData项目名称链接到RFP:RFP类别devtools-libraries提案人:finddataio您是否同意在MIT和APACHE2许可下开放您代表该RFP和双重许可所做的所有工作的源代码?是项目简介概述互联网和区块链每天都会生成大量数据,包括由应用程序,行为和机器生成的数据。通过数据的管理和分析,我们可以发现数据中包含的巨大价值,并了解和洞察事物的内在本质。大数据已经成为人类了解世界的一种手段,数据正在不断改变人们的生活方式,经济规则,商业模式,甚至推动着整个社会和经济的创新与变革。基于全球区块链节点网络资源,创建了一个高度可配置但易于操作的数据采集机器人和数据资产交易网络,以最大化数据挖掘和数据价值。finddata节点的机械手用于挖掘原始数据。收集到的数据经过净化后上传到云端,然后由业务服务器触发数据
数据挖掘
3
2024-07-16
数据挖掘是大数据时代关键的工作
数据挖掘是从海量数据中挖掘隐藏价值信息的自动化过程。它融合人工智能、机器学习等技术,帮助决策者识别模式,调整策略。
数据挖掘
2
2024-05-26
2021 年冬季 ECE 219 数据挖掘课程成绩单
项目成绩:
项目 1(文本数据分类分析):138.0 / 142.0
项目 2(群集):211.0 / 211.0
项目 3(协作过滤):212.0 / 214.0
项目 4(回归分析):223.0 / 223.0
最终成绩:A +
数据挖掘
3
2024-05-13