以 HDFS 为基石,构建海量文本数据存储平台,ElasticSearch 提供高效检索与分析能力,Spark 负责大规模数据处理,TensorFlow 赋予深度学习模型构建能力,共同搭建强大的文本分析中台。
文本分析中台架构:HDFS、ElasticSearch、Spark 和 TensorFlow 的协同力量
相关推荐
Elasticsearch:释放沉睡数据的力量
Elasticsearch 是一款分布式、可扩展和实时的数据搜索与分析引擎,赋予数据搜索、分析和探索的能力,将沉睡在磁盘中的原始数据转化为有价值的洞察。
kafka
4
2024-05-12
用户行为分析平台架构解析
用户行为分析平台架构解析
本节深入剖析用户行为分析平台的整体架构及运作流程。
Hive
8
2024-05-12
构建文本分析模型tinyxml指南
12.8操作步骤第一步:使用“Nominal to Text”操作符,将属性att2的数据类型转换为文本。这一步骤是为了告知RapidMiner我们需要处理的是文本数据,详见图12.3。接下来,连接“Process Documents from Data”操作符,将其输入端与“Nominal to Text”连接,输出端“exa”和“wor”连接至结果端,详见图12.4。双击“Process Documents from Data”操作符,进入其设置界面,添加默认参数配置的“Tokenize”分词器操作符,详见图12.5。
算法与数据结构
0
2024-10-15
大数据中台架构技术体系入门
梳理常见开源技术方案,了解其原理及应用场景。
帮助产品经理全面了解大数据技术体系。
提升对复杂系统的理解,拓展认知边界。
Hadoop
3
2024-05-20
大数据时代的数据分析平台架构
随着互联网、移动互联网和物联网的蓬勃发展,我们已经置身于海量数据的时代。据数据调查公司IDC预测,到2011年,全球数据总量将达到1.8万亿GB。在这样的背景下,对海量数据进行精准分析已经成为一项非常紧迫的需求。
算法与数据结构
2
2024-07-17
Web挖掘与文本分类中的特征选择算法
面对海量Web数据,如何高效处理和分析成为关键。特征选择算法作为数据挖掘、文本分类以及Web分类的核心技术之一,为我们提供了有效解决方案。通过筛选最具代表性的特征,该算法可以降低数据维度、提高模型效率,并提升分类精度。
数据挖掘
3
2024-05-25
COVID-19文本分析与MATLAB应用
新冠疫情期间,文本分析技术通过MATLAB平台展现出了强大的应用潜力。
Matlab
2
2024-07-26
文本分类中的朴素贝叶斯理论与实践
贝叶斯原理是概率统计中的基石,在机器学习领域,尤其是文本分类任务中扮演着重要角色。朴素贝叶斯(Naive Bayes)分类器是一种基于贝叶斯定理和特征条件独立假设的简单概率分类器。核心思想是在给定实例特征值时,使用贝叶斯定理计算该实例属于每个类别的后验概率,并将其划分到具有最大后验概率的类别。贝叶斯公式是该方法的基础,表达已知条件下事件发生的概率。对于文本分类,可视为给定文本特征(即单词)条件下某类别的概率。贝叶斯公式表示如下:
$$P(Y|X) = \frac{P(X|Y) \cdot P(Y)}{P(X)}$$
其中,$Y$代表类别标签,$X$为文本特征向量,$P(Y|X)$为后验概率,表示已知文本特征时,文本属于某类别的概率;$P(X|Y)$为类条件概率,表示给定类别时观察到当前文本特征的概率;$P(Y)$为先验概率,表示不考虑文本特征时文本属于某类别的概率;$P(X)$为边际概率,可在比较不同类别的后验概率时忽略。
朴素贝叶斯的关键假设是特征的条件独立性,即在给定类别下,一个特征的出现不依赖于其他特征。尽管该假设并不总是符合实际,但在许多情况下仍能取得不错的分类效果,特别是在文本分类领域。
朴素贝叶斯的主要流程如下:1. 训练阶段:计算训练数据集各类别下的单词频率。2. 特征提取:从新文本中提取单词。3. 后验概率计算:根据贝叶斯定理计算新文本在每个类别下的后验概率。4. 分类决策:将新文本分配给后验概率最高的类别。
在应用上,朴素贝叶斯能有效处理大量特征,在文本挖掘领域如垃圾邮件过滤、情感分析和文档分类等任务表现优异。此外,该算法具有实现简单、分类速度快的优势。然而,当特征间存在依赖关系时,朴素贝叶斯可能会出现准确性下降的问题。
数据挖掘
0
2024-10-25
HDFS系统架构
HDFS文件分块存储,每个块64MB,拥有多个副本,分布在不同节点保证数据可靠性。元数据记录了文件块位置信息,方便快速定位。
Hadoop
2
2024-05-01