数据挖掘的本质是从海量数据中,运用专业知识,揭示隐藏的知识和规律,这些知识和规律可以是自然形成的,也可以是人为构建的,是全新的知识发现。

20世纪90年代,数据挖掘从实践领域兴起,并在集成数据挖掘算法平台的支持下,发展成为一种适用于商业分析的技术。 由于数据挖掘起源于实践而非理论,其过程的理解并未得到足够重视。直到20世纪90年代后期,CRISP-DM模型的出现,才逐渐成为数据挖掘过程的标准化流程,被越来越多的数据挖掘实践者所接受和应用。 CRISP-DM模型有效地指导了数据挖掘的实施,但它并不能解释数据挖掘的本质。