基于MATLAB的三维超声成像与图像处理
这份资源探讨了如何利用MATLAB实现三维超声成像和图像处理技术。它涵盖了从数据采集到图像渲染的各个方面,并深入讲解了相关的算法和MATLAB代码实现。
Matlab
4
2024-05-21
超声成像工具箱优化
Matlab超声成像波束合成工具箱Beamformation Toolbox。本目录包含用于超声成像的工具箱。当前目录包括:文档目录(PDF、HTML格式)、bft_*.m文件集、示例目录、C文件目录和头文件目录。
Matlab
2
2024-07-27
使用预训练模型进行乳腺癌图像分类的MATLAB代码
在乳腺癌检测中,该MATLAB代码利用预训练模型对图像进行分类。需要的前提条件包括Python 2.7和MATLAB(使用LIBSVM)。数据集来自BreakHis,使用VGG-16权重进行处理。方法包括特征提取、数据平衡处理以及使用线性SVM、多项式SVM和随机森林进行分类。
Matlab
0
2024-10-02
高效的监督式RBM训练代码推荐
这段Matlab代码为监督式RBM训练提供了优秀的解决方案,能够有效评估和提升模型性能。
Matlab
2
2024-05-25
att_faces图像集用于人脸识别技术的数据集
att_faces是一个专门为人脸识别技术设计的数据集,包含40个人的人脸图像,每人有10张照片,分别存储在40个文件夹中(命名为s1至s40)。每张照片的尺寸为112*92像素。
Matlab
0
2024-08-17
医学超声成像中的编码激励技术及其应用
医学超声成像领域中,编码激励技术的应用日益广泛。这种技术不仅提升了图像分辨率和信噪比,还在临床诊断中展示了显著的潜力。通过引入新的信号编码方法,研究者们能够更精确地获取人体组织的结构和功能信息,从而推动了超声成像技术的进步和应用。
算法与数据结构
5
2024-07-15
Matlab分水岭算法的源代码-数据生成核AI数据生成核AI
Matlab分水岭算法的实现包括质量控制管道。软件针对FFPE扫描执行质量控制,首先将扫描分割为512x512像素的重叠10%的小视场。接着使用filter_out_background.m背景滤镜,确保滤除不含组织或仅包含基质的图像。脚本会测量每个FOV的整体强度,若未达到1000强度阈值则将其过滤掉。用户可以选择FOV所在的文件夹selpath_source=uigetdir('','源目录'); files=dir([selpath_source '/i*.tif']); names_files={files(:).name}; 对每个文件夹中的FOV进行强度测量。
Matlab
1
2024-07-24
FastText训练集
提供适用于FastText文本分类训练的高质量数据集。
算法与数据结构
4
2024-05-13
基于LVQ神经网络的乳腺肿瘤诊断分类MATLAB代码
LVQ神经网络是一种监督学习的分类算法,特别适用于乳腺肿瘤的诊断分类。该算法通过训练找到最优的原型向量,代表输入空间中的不同类别,帮助医生准确判断肿瘤性质。在MATLAB环境中实现LVQ网络,我们需准备乳腺肿瘤数据集,包括病人的年龄、肿块大小等特征,进行数据预处理后,定义网络结构并训练。LVQ算法选择最接近输入样本的原型向量并更新,最终输出分类结果。虽然LVQ网络简单且解释性强,但对初始原型位置敏感,针对高维数据集效果可能不佳,建议结合其他方法如SVM或深度学习模型提高诊断准确性。
算法与数据结构
3
2024-07-17