道路运输管理信息数据常存在不一致、不精确和不完整等问题。为此,本研究结合粗糙集理论的系统归纳思想和属性约简方法,提出了一种将粗糙集分析与经典关联规则相结合的数据挖掘方法。
该方法利用粗糙集分析规则条数与支持度、置信度之间的关系,并通过道路运输管理的实际案例验证了其科学性和有效性。结果表明,该方法能够有效解决道路运输管理的实际问题,并在所选案例中实现了约简 33.3% 条件属性的优化效果。
道路运输管理信息数据常存在不一致、不精确和不完整等问题。为此,本研究结合粗糙集理论的系统归纳思想和属性约简方法,提出了一种将粗糙集分析与经典关联规则相结合的数据挖掘方法。
该方法利用粗糙集分析规则条数与支持度、置信度之间的关系,并通过道路运输管理的实际案例验证了其科学性和有效性。结果表明,该方法能够有效解决道路运输管理的实际问题,并在所选案例中实现了约简 33.3% 条件属性的优化效果。